Автотрансформаторы

Принцип действия автотрансформатора

Несмотря на особенности строения обмоточной части агрегата, его принцип действия очень напоминает работу обычного трансформатора. По такому же принципу во время циркуляции переменного тока возникает магнитный поток в сердечнике. Его действие на обмотку характеризуется появлением на каждом отдельном витке равновеликой электродвижущей силы. Суммарная ЭДС на отрезке обмотки равна сумме величин токов всех отдельно взятых витков.

Особенностью является то, что по обмотке циркулирует ещё и первичный ток, который оказывается в противофазе к индукционному потоку. Результирующие значения этих токов на участке обмотки, предназначенной для потребителя, получаются меньшими (для понижающего тр.) чем параметры поступающего электричества.

Схема понижающего автотрансформатора

Соотношение величин ЭДС выражается формулой: E1/E2 = w1/w2 = k , где E – ЭДС, w – количество витков, k – коэффициент трансформации.

Учитывая то, что падение напряжений в обмотках трансформатора невелико – его можно не учитывать. В таком случае равенства: U1 = E1; U2 = E2 можно считать справедливыми. Таким образом, приведённая выше формула приобретает вид: U1/U2 = w1/w2 = k, то есть, соотношение напряжений к числу витков такое же, как и для обычного трансформатора.

Примечательно, что мощность нагрузки образуют токи электромагнитной индукции и электрической составляющей. Электрическая мощность ( P = U2*I1 ) довольно ощутима, в сравнении с индукционной составляющей, поступающей во вторичную цепь. Поэтому, чтобы получить требуемую мощность, используются меньшие значения сечений для магнитопроводов.

Это интересно: Что такое сухие трансформаторы?

О принципе работы устройств

Регулируемый лабораторный автотрансформатор, сокращенно LATR, представляет собой устройство на основе магнитопровода с медной обмоткой, где происходит электрическое соединение. Угольная щетка движется по обмотке, создавая контакт с подключенным потребителем электроэнергии. В зависимости от положения щетки изменяется коэффициент трансформации, что, в свою очередь, влияет на значение выходного напряжения. Благодаря поворотному регулятору, с помощью которого изменяется положение щетки, можно масштабировать значение напряжения тока, подаваемого на нагрузку.

Электропотребители подключаются к лабораторному автотрансформатору через выходные клеммы, в свою очередь, само устройство подключается к центральной электрической сети через входные клеммы или путем подключения электрической вилки к розетке.

Основное отличие лабораторных автотрансформаторов от обычных состоит в том, что подвижный контакт в обмотке позволяет изменять количество включенных в цепь витков и тем самым позволяет устанавливать напряжение в широком диапазоне, например в однофазной сети. – от 0 до 250 В, в трехфазной сети – от 0 до 430 В. Изменение количества витков происходит плавно, поэтому можно получить максимально точные значения напряжения и чистую синусоиду на выходе. Кроме того, это устройство легче и компактнее аналогов, выполненных по традиционной схеме, и имеет гораздо более высокий КПД (до 98%). Для контроля работы на панели управления есть вольтметр, а вентиляционные решетки в корпусе способствуют естественному охлаждению устройства и предотвращают перегрев.

Что такое коэффициент трансформации

Трансформатор не меняет один параметр в другой, а работает с их величинами. Тем не менее его называют преобразователем. В зависимости от подключения первичной обмотки к источнику питания, меняется назначение прибора.

В быту широко распространены эти устройства. Их цель — подать на домашнее устройство такое питание, которое бы соответствовало номинальному значению, указанному в паспорте этого прибора. Например, в сети напряжение равно 220 вольт, аккумулятор телефона заряжается от источника питания в 6 вольт. Поэтому необходимо понизить сетевое напряжение в 220:6 = 36,7 раз, этот показатель называется коэффициент трансформации.

Чтобы точно рассчитать этот показатель, необходимо вспомнить устройство самого трансформатора. В любом таком устройстве имеется сердечник, выполненный из специального сплава, и не менее 2 катушек:

  • первичной;
  • вторичной.

Первичная катушка подключается к источнику питания, вторичная — к нагрузке, их может быть 1 и более. Обмотка — это катушка, состоящая из намотанного на каркас, или без него, электроизоляционного провода. Полный оборот провода называется витком. Первая и вторая катушки устанавливаются на сердечник, с его помощью энергия передается между обмотками.

Для силового трансформатора

Трансформаторы бывают повышающие и понижающие, что бы это определить нужно узнать коэффициент трансформации, с его помощью можно узнать какой трансформатор. Если коэффициент меньше 1 то трансформатор повышающий(также это можно определить по значениям если во вторичной обмотке больше чем в первичной то такой повышающий) и наоборот если К>1, то понижающий(если в первичной обмотке меньше витков чем во вторичной).

Формула по вычислению коэффициента трансформации

где:

  • U1 и U2 — напряжение в первичной и вторичной обмотки,
  • N1 и N2 — количество витков в первичной и вторичной обмотке,
  • I1 и I2 — ток в первичной и вторичной обмотки.

Трансформатор тока

Формула для вычисления коэффициента трансформации ТТ:

Значения коэффициентов обычно очень большие по сравнению с силовым трансформатор. Величины могут быть такими, как представлено в таблице:

Определим коэфф. трансформации: возьмём ТТ со значениями которые выделены в таблице 600/5 = 120. Также можно взять любой трансформатор 750/5 = 150; 800/2 = 400 и тд.

Трансформатор напряжения

Формула для вычисления коэффициента трансформации ТН:

Давайте рассчитаем коэффициент трансформации для ТН который показана на фото ниже:

Нужно взять напряжение первичной обмотки(красная стрелка) и разделить на напряжение вторичной обмотки(жёлтая стрелка). 35000/100 = 350.

Коэффициент трансформации электросчетчика

Величина коэффициента трансформации широко применяется для приборов учета электроэнергии. Эти данные необходимы для правильного выбора электросчетчика и дальнейших расчетов реального энергопотребления. С этой целью используется дополнительный показатель – расчетный коэффициент учета.

Для того чтобы определить данную величину с прибора учета электроэнергии снимаются показания и умножаются на коэффициент трансформации подключенного трансформаторного устройства. Например, решая задачу, как найти нужный показатель, 60 кВт/ч нужно умножить на коэффициент, равный 20 (30, 40 или 60). В результате умножения получается 60 х 20 = 1200 кВт/ч. Полученной значение и будет реальным расходом электроэнергии.

Существуют различные виды приборов учета. По своему принципу действия они могут быть одно- или трехфазными. Они не подключаются напрямую, между ними в цепь обязательно включается трансформатор тока. Некоторые конструкции счетчиков предполагают возможность прямого включения. В сетях с напряжением до 380 вольт используются счетчики 5-20 ампер. На счетчик поступает электроэнергия в чистом виде, с постоянным значением.

В настоящее время используются индукционные приборы учета, которые постепенно заменяются электронными моделями. Они считаются устаревшими, поскольку не могут выполнять учет потребленной электроэнергии по разным тарифам. Кроме того, они не могут передавать данные на удаленное расстояние. Поэтому на смену им приходят электронные счетчики, способные напрямую преобразовывать поступающий ток в определенные сигналы. В этих конструкциях отсутствуют вращающиеся части, что способствует существенному повышению их надежности и долговечности. Коэффициент трансформации счетчиков оказывает прямое влияние на точность получаемых данных.

Типы сердечников для трансформаторов

На практике используются сердечники не только указанной формы. В зависимости от назначения устройства магнитопроводы могут выполняться по-разному.

Стержневые сердечники

Магнитопроводы низкочастотных трансформаторов изготавливают из стали с выраженными магнитными свойствами. Для уменьшения вихревых токов массив сердечника набирают из отдельных пластин, электрически изолированных друг от друга. Для работы на высоких частотах применяют другие материалы, например, ферриты.

Рассмотренный выше сердечник называется стержневым и состоит из двух стержней. Для однофазных трансформаторов применяют и трехстержневые магнитопроводы. У них меньше магнитный поток рассеяния и выше КПД. В этом случае и первичная и вторичная обмотки располагаются на центральном стержне сердечника.

Также на трёхстержневых сердечниках выполняют трехфазные трансформаторы. У них первичная и вторичная обмотки каждой фазы располагаются каждая на своём сердечнике. В некоторых случаях применяются пятистержневые магнитопроводы. У них обмотки располагаются точно также – первичная и вторичная каждая на своём стержне, а два крайних стержня с каждой стороны предназначены только для замыкания магнитных потоков в определенных режимах.

Броневые

В броневом сердечнике выполняют однофазные трансформаторы – обе катушки располагают на центральном стержне магнитопровода. Магнитный поток в таком сердечнике замыкается аналогично трехстержневому конструктиву — через боковые стенки. Поток рассеяния при этом очень мал.

К плюсам такой конструкции относят некоторый выигрыш по габаритам и весу за счёт возможности более плотного заполнения окна сердечника обмоткой, поэтому броневые сердечники выгодно применять для изготовления маломощных трансформаторов. Следствием этого также является более короткая магнитная цепь, что ведёт к уменьшению потерь холостого хода.

Недостатком считается более сложный доступ к обмоткам для ревизии и ремонта, а также повышенная сложность изготовления изоляции для высоких напряжений.

Тороидальные

У тороидальных сердечников магнитный поток полностью замыкается внутри сердечника, и магнитный поток рассеяния практически отсутствует. Но такие трансформаторы сложны в намотке, поэтому их применяют достаточно редко, например, в регулируемых автотрансформаторах небольшой мощности или в высокочастотных устройствах, где важна помехозащищенность.

Магнитный поток в тороидальном сердечнике

Автотрансформатор

В некоторых случаях целесообразно применять такие трансформаторы, у которых между обмотками имеется не только магнитная связь, но и электрическая. То есть, в повышающих устройствах первичная обмотка является частью вторичной, а в понижающих – вторичная частью первичной. Такое устройство называется автотрансформатором (АТ).

Плюсами автотрансформаторов являются:

  • меньшие потери;
  • возможность плавного регулирования напряжения;
  • меньшие массогабаритные показатели (автотрансформатор дешевле, его проще транспортировать);
  • меньшая стоимость за счёт меньшего потребного количества материала.

К минусам относят необходимость применения изоляции обеих обмоток, рассчитанной на высшее напряжение, а также отсутствие гальванической развязки между входом и выходом, что может перенести воздействие атмосферных явлений из первичной цепи во вторичную. При этом элементы вторичной цепи нельзя заземлять. Также недостатком АТ считают повышенные токи короткого замыкания. У трехфазных автотрансформаторов обмотки обычно соединяют в звезду с заземленной нейтралью, другие схемы соединения возможны, но слишком сложны и громоздки. Это тоже является недостатком, сужающим область применения автотрансформаторов.

Классификации

Трансформаторы классифицируются по ряду параметров, таким как:

  • Назначение. Применяются: для изменения напряжения, измерения тока, защиты электрических цепей, как лабораторные и промежуточные устройства.
  • Способ установки. В зависимости от размещения и мобильности трансформатор может быть: стационарным, переносным, внутренним, внешним, опорным, шинным.
  • Число ступеней. Устройства подразделяются на одноступенчатые и каскадные.
  • Номинальное напряжение. Бывают низко- и высоковольтными.
  • Изоляция обмоток. Наиболее часто используется бумажно-масляная, сухая, компаундная.

Помимо этого, преобразовательные устройства разнятся типами, каждому из которых присуща своя система классификации.

Силовой

Наибольшее распространение получил силовой трансформатор. Приборы с непосредственным преобразованием переменного напряжения, рассчитанные на большую мощность, востребованы различными областями электроэнергетики. Они применяются на линиях электропередач с напряжениями 35–1150 кВ, в городских электросетях, работающих с напряжением 6 и 10 кВ, в обеспечении конечных потребителей напряжением 220/380В. С помощью устройств осуществляется питание всевозможных электроустановок и приборов в диапазоне от долей до сотен тысяч вольт.

Силовой трансформатор

Измерительные

Трансформаторы тока (ТА) понижают ток до необходимых показателей. Схема их работы отличается последовательным включением первичной обмотки и нагрузки. В то же время вторичная обмотка, находящаяся в состоянии, близком к короткому замыканию, используется для подключения измерительных приборов, исполнительных и индикаторных устройств. С помощью ТА осуществляется гальваническая развязка, что позволяет при измерениях отказаться от шунтов.

Высоковольтный ТТ(слева) и низковольтный ТТ(справа)

С помощью трансформаторов напряжения (ТН), тоже самое что и ТА только по напряжению. Помимо преобразования входных параметров, электроаппаратура и её отдельные элементы получают защиту от высокого вольтажа.

Высоковольтный ТН(слева) и низковольтный ТН(справа)

Импульсный

При необходимости преобразования сигналов импульсного характера применяются импульсные трансформаторы (ИТ). Изменяя амплитуду и полярность импульсов, устройства сохраняют их длительность и практически не затрагивают форму.

Автотрансформатор

В автотрансформаторах обмотки составляют одну цепь и взаимодействуют посредством электромагнитной и электрической связи. В отличие от других типов преобразователей, устройства могут содержать всего 3 вывода, позволяющих оперировать с различными напряжениями. Приборы выделяются высоким коэффициентом полезного действия, что особо сказывается при незначительном перепаде входного и выходного напряжения.

Однофазный(слева) и трёхфазный(справа)

Не имея гальванической развязки, представители данного типа повышают риск высоковольтного удара по нагрузке. Обязательным условием работы устройств являются надёжное заземление и низкий коэффициент трансформации. Недостаток компенсируется меньшим расходом материалов при изготовлении, компактностью и весом, стоимостью.

Разделительный

Для разделительных трансформаторов взаимодействие между обмотками исключено. Устройства повышают безопасность электрооборудования при повреждённой изоляции.

Разделительный трансформатор

Согласующий

Согласующие трансформаторы применяются для выравнивания сопротивлений между каскадами схем электроники. Сохраняя форму сигнала, они играют роль гальванической развязки.

Пик-трансформатор

С помощью пик-трансформатора синусоидальное напряжение преобразуется в импульсное. При этом импульсы меняют полярность с каждым полупериодом.

Сдвоенный дроссель

Особенностью сдвоенного дросселя является идентичность обмоток. Взаимная индукция катушек делает его более эффективным, по отношению стандартным дросселям. Устройства используются как входные фильтры в блоках питания, в звуко- и цифровой технике.

Сдвоенный дроссель

Сварочный

Помимо вышеперечисленных, существует понятие сварочные трансформаторы. Специализированные приборы для сварочных работ понижают напряжение бытовой сети при одновременном повышении тока, измеряемого тысячами ампер. Регулировка последнего осуществляется разделением обмоток на сектора, что отражается на индуктивном сопротивлении.

Сварочный трансформатор

Переменный автотрансформатор

Наряду с наличием фиксированной или постукивающей вторичной обмотки, которая создает выходное напряжение на определенном уровне, существует еще одно полезное применение устройства типа автотрансформатора, которое можно использовать для получения переменного напряжения от источника переменного тока с фиксированным напряжением. Этот тип переменного автотрансформатора обычно используется в лабораториях и научных лабораториях в школах и колледжах и более известен как Variac.

Конструкция переменного автотрансформатора, или вариака, такая же, как и для фиксированного типа. Одинарная первичная обмотка, намотанная на многослойный магнитный сердечник, используется, как в автотрансформаторе, но вместо того, чтобы фиксироваться в некоторой заранее определенной точке ответвления, вторичное напряжение отводится через угольную щетку.

Эта угольная щетка вращается или может скользить вдоль открытой части первичной обмотки, соприкасаясь с ней по мере движения, обеспечивая требуемый уровень напряжения.

Затем переменный автотрансформатор содержит переменный отвод в форме угольной щетки, которая скользит вверх и вниз по первичной обмотке, которая контролирует длину вторичной обмотки, и, следовательно, вторичное выходное напряжение полностью изменяется от значения первичного напряжения питания до нуля вольт.

Переменный автотрансформатор обычно имеет значительное количество первичных обмоток для создания вторичного напряжения, которое можно регулировать в диапазоне от нескольких вольт. Это достигается благодаря тому, что угольная щетка или ползун всегда находятся в контакте с одним или несколькими витками первичной обмотки. Поскольку витки первичной катушки равномерно распределены по ее длине. Тогда выходное напряжение становится пропорциональным угловому вращению.

Мы видим, что вариак может плавно регулировать напряжение на нагрузке от нуля до номинального напряжения питания. Если в некоторой точке вдоль первичной обмотки было подано напряжение питания, то потенциально вторичное выходное напряжение могло бы быть выше, чем фактическое напряжение питания. Переменный автотрансформатор также можно использовать для регулировки яркости света, а при использовании в этом типе приложений их иногда называют «диммерами».

Вариак также очень полезен в электротехнических и электронных мастерских и лабораториях, так как они могут использоваться для обеспечения переменного питания

Но следует соблюдать осторожность с подходящей защитой предохранителей, чтобы гарантировать, что более высокое напряжение питания не присутствует на вторичных клеммах в условиях неисправности

Автотрансформатор имеет много преимуществ по сравнению с обычными трансформаторами двойных обмоток. Они, как правило, более эффективны при одинаковом номинальном значении ВА, имеют меньшие размеры и, поскольку в их конструкции требуется меньше меди, их стоимость ниже по сравнению с трансформаторами с двойной обмоткой с одинаковыми номинальными характеристиками. Кроме того, их потери в сердечнике и меди, I 2 R , ниже из-за меньшего сопротивления и реактивного сопротивления рассеяния, обеспечивающих более высокое регулирование напряжения, чем у эквивалентных двухобмоточных трансформаторов.

В следующей статье о трансформаторах мы рассмотрим другой дизайн трансформатора, у которого нет обычной первичной обмотки, намотанной вокруг его сердечника. Этот тип трансформатора обычно называют трансформатором токаи используется для питания амперметров и других таких индикаторов электрической мощности.

Тимеркаев Борис — 68-летний доктор физико-математических наук, профессор из России. Он является заведующим кафедрой общей физики в Казанском национальном исследовательском техническом университете имени А. Н. ТУПОЛЕВА — КАИ

Важные параметры выбора

Прежде всего, необходимо определиться, для чего будет использоваться автотрансформатор. Например, чтобы проверить работоспособность электрического оборудования на заводе, вам понадобится модель, обеспечивающая питание для ремонта автомобильной стереосистемы – совершенно другая. Чтобы упростить формулировку требований к устройству, учитывайте следующие параметры:

Власть. Вы можете выбрать ЛАТР мощностью от 0,45 до 10 Вт (и даже больше), но для начала необходимо рассчитать нагрузку всех подключенных потребителей электроэнергии. Их общая мощность не должна превышать мощность автотрансформатора.

Диапазон регулирования напряжения. Это зависит от того, как устройство работает: на уменьшение или увеличение параметров напряжения. Большинство моделей относятся к понижающему типу, особенно однофазные, их рабочий диапазон может составлять от 0 до 250 В или от 160 до 220 В. В зависимости от величины напряжения, необходимого для работы оборудования, выберите LATR с соответствующим интервалом. Для трехфазных моделей диапазон шире – нижний предел может быть на уровне 200-220 В. Лабораторный автотрансформатор с большим рабочим диапазоном не всегда нужен, например, если напряжение в сети падает до 180 В (не выше и не ниже), то можно купить регулируемый трансформатор в пределах 180-220В.

Напряжение питания. Если вы планируете подключить устройство к однофазной сети, то вам необходимо приобрести модель 220 В, если трехфазную – 380 В (при этом у такой модели диапазон диммирования может выходить далеко за пределы например, номинальные значения одной трехфазной сети могут составлять от 0 до 430 В).

Итак, вы уже решили купить лабораторный автотрансформатор? С помощью этого устройства вы сможете регулировать показатели напряжения в сети и устанавливать необходимые значения для конкретного типа потребителя энергии. А на нашем сайте вы сможете быстро выбрать и заказать нужную технику. Не откладывайте покупку – возьмите под контроль напряжение!

Что такое ЛАТР

Кроме силовых аппаратов, заменяющих обычные трансформаторы, в школах, институтах и лабораториях используются ЛАТРы – Лабораторные АвтоТРанформаторы. Эти устройства используются для плавного изменения напряжения на выходе аппарата. Самые распространенные конструкции представляют из себя катушку, намотанную на тороидальном магнитопроводе. С одной из сторон провод очищен от лака и по нему при помощи поворотного механизма двигается графитный ролик.

Питающее напряжение подаётся на концы катушки, а вторичное снимается с одного из концов и графитного ролика. Поэтому ЛАТР не может поднимать напряжение выше сетевого, в некоторых модификациях выше 250В.

Кроме катушечных, есть электронные ЛАТРы. Фактически, это не автотрансформатор, а регулятор напряжения. Есть разные виды таких устройств:

  • Тиристорный регулятор. В этих аппаратах в качестве силового элемента установлены тиристор и диодный мост или симистор. Недостаток в отсутствии синусоидальной формы выходного напряжения. Самый известный прибор такого типа – диммер ламп освещения.
  • Транзисторный регулятор. Дороже тиристорного, требует установки транзисторов на радиаторы. Обеспечивает синусоидальную форму выходного напряжения.
  • ШИМ-контроллер.

Особенности

Схема замещения автотрансформатора позволяет сэкономить на количестве медного проводника. Для такого оборудования необходима проволока меньшего сечения. Это обеспечивает значительную экономию материалов и относительно невысокую стоимость аппарата. Сократить расходы на изготовление представленного оборудования удается благодаря снижению количества стали для изготовления магнитопривода. Силовые трансформаторы и автотрансформаторы значительно отличаются размером сечения сердечника.

Устройство современного автотрансформатора делает оборудование востребованным, если показатель трансформации приближается к 1 или находится в пределах от 1,5 до 2. Если же коэффициент будет больше 3, применение подобного прибора становится неоправданным.

По многим параметрам принцип работы автотрансформатора, его конструкция и детали мало отличаются от обычных двухобмоточных трансформаторов.

Различные режимы работы автотрансформаторов позволяют устранить недостатки бытовой электросети. Это необходимо, например, когда напряжение не дотягивает или, наоборот, немного превышает стандартную норму 220 В. Особенности конструкции автотрансформатора позволяют выполнять настройку с определенным шагом. Электронный автотрансформатор, имеющий в своем составе коммутационную и регулирующую систему выполняет этот процесс автоматически.

Как работает ЛАТР на практике

Давайте проведем опыты с лампочкой накаливания в 95 Ватт 220 Вольт. Для этого цепляем ее к выходным клеммам справа.

Интересно, при каком напряжении начнет светится спираль лампочки? Давайте узнаем! Крутим регулятор, пока не заметим слабое свечение лампочки.

Смотрим на шкалу регулятора. 35 Вольт!

А вы знаете, что в США  сетевое напряжение 110 Вольт? Интересно, как бы светилась тогда наша лампочка? Выставляем 110 Вольт.

Светится, как говорится, в пол накала.

А теперь сравните, как она светится при 220 В

Дальше повышать напряжение нет смысла. Лампочка может перегореть.

Если хотите выставить напряжение с большой точностью, то конечно же, здесь не обойтись без мультиметра. Для этого ставим крутилку мультиметра  на положение измерения переменного напряжения

Цепляемся и меряем переменное напряжение. Заодно подгоняем с помощью регулятора ЛАТРа. Ровно 110 Вольт!

Классификация видов

Как правило, рассматриваемые устройства используются в промышленных и бытовых применениях, которые рассчитаны на низкое энергопотребление. Они эффективны также для соединения систем, работающих при разных значениях напряжения. Этим объясняется разнообразие видов автотрансформаторов.

Рассматриваемые изделия различают:

По степени внешней защиты корпуса – устройства, предназначенные для функционирования снаружи, снабжаются водонепроницаемым корпусом.
По техническим характеристикам – диапазону рабочих частот, значениям максимального первичного и вторичного напряжения, наибольшему вторичному току, мощности и температуре.
По типу электрической сети, в которой они функционируют – одно – или трёхфазной. Однофазный(слева) и трёхфазный(справа)

По значению выходного напряжения автотрансформаторы могут быть повышающими или понижающими. Особый класс образуют устройства со скользящими отводами

Важной характеристикой, которую учитывают при выборе, является тип сердечника – ламинированный, сплит и тороидальный. 1а – трансформатор, 1б – понижающий, 1в – повышающий

Основные виды автотрансформаторов

  • ВУ-25-Б — служит для уравнивания вторичных токов в дифференциальных защитах силовых трансформаторов.
  • АТД — мощность 25 Вт, долго насыщается, имеет старую конструкцию и поэтому используется очень редко.
  • ЛАТР-1 — предназначен в сетях с напряжением 127 В.
  • ЛАТР-2 — применяется с напряжением 220 В.
  • ДАТР-1 — предназначен для малых нагрузок.
  • РНО — предназначен для больших нагрузок.
  • АТЦН — применяется в измерительных телеустройствах.

Особенности режимов автотрансформаторов

Лекция 5. Режимы работы автотрансформатров

Содержание лекции:особенности режимов работы автотрансформаторов.

Цель лекции:изучение режимов работы автотрансформаторов.

Автотрансформаторы выполняются трехобмоточными, причем обмотки ВН

иСН имеют электрическую связь, а обмоткаНН — магнитную. При наличии трех обмоток и гальванической связи между обмоткамиВН иСН могут иметь место различные режимы работы, как это показано на рисунке 5.1.

В автотрансформаторных режимах возможна передача номинальной мощности Sном

из обмоткиВН в обмоткуСН или наоборот. В обоих режимах в общей обмотке проходит разность токовIC-IB =kвыг∙IC , а поэтому последовательная и общая обмотки загружены типовой мощностью, что допустимо.

а, б

– автотрансформаторные режимы;в, г — трансформаторные режимы;д, е – комбинированные режимы.

Рисунок 5.1 — Распределение токов в обмотках автотрансформатора

в различных режимах

В трансформаторных режимах возможна передача мощности из обмотки НН

в обмоткуСН илиВН , причем обмоткуНН можно загрузить не более, чем наSтип. Условие допустимости режимаННВН илиННСН SН≤Smиn=kвыгSном . Если происходит трансформацияSтип изНН вСН , то общая обмотка загружена такой же мощностью и дополнительная передача мощности изВН вСН невозможна, хотя последовательная обмотка не загружена.

В трансформаторном режиме передачи мощности Sтип

из обмоткиНН вВН общая и последовательная обмотки загружены не полностью, поэтому возможно дополнительно передать из обмоткиСН вВН некоторую мощность

, (5.1)

В комбинированном режиме передачи мощности автотрансформаторным путем ВН

СН и трансформаторным путемННСН ток в последовательной обмотке

, (5.2)

где PB

,QB – мощности, передаваемые изВН вСН .

Нагрузка последовательной обмотки

, (5.3)

Отсюда видно, что даже при передаче номинальной мощности

=Sном последовательная обмотка не будет перегружена. Нагрузка общей обмотки

, (5.4)

Подставляя значения токов и производя преобразования получаем

, (5.5)

где PH

,QH – активная и реактивная мощности, передаваемые из обмоткиНН в обмоткуСН .

Таким образом комбинированный режим НН

СН ,ВНСН ограничивается загрузкой общей обмотки.

Распределение токов в комбинированном режиме передачи мощности из обмоток НН

иСН в обмоткуВН показано на рисунке 2е . В общей обмотке ток автотрансформаторного режима направлен встречно току трансформаторного режима, поэтому загрузка обмотки значительно меньше допустимой и в пределе может быть равна нулю. В последовательной обмотке токи складываются, что может вызвать ее перегрузку. Этот режим ограничивается загрузкой последовательной обмотки.

Возможны и другие комбинированные режимы: передача мощности из обмотки СН

в обмоткиНН иВН или работа в понижающем режиме при передаче мощности из обмоткиВН в обмоткиСН иНН .

Подведём итоги

На практике с автотрансформаторами мы сталкиваемся довольно часто, например, в релейных и электронных (симисторных) стабилизаторах напряжения они используются для повышения и понижения напряжения.

Трёхфазные автотрансформаторы нашли применение в сетях высокого напряжения для связи сетей с «соседними» напряжениями — 110 и 220, 220 и 500 кВ.

Для проведения испытаний, а также настройки электрооборудования используются лабораторные автотрансформаторы – ЛАТРы. Это автотрансформаторы, в которых вместо отвода от обмотки для подключения нагрузки используется скользящий контакт, на рисунке 8 он обведён зелёным цветом, типа токосъёмной щётки. Изменяя положение скользящего контакта, вы подключаете нагрузку к разным виткам обмотки, другими словами – вы можете регулировать напряжение.

При этом с помощью большинства ЛАТРов можно как понижать, так и повышать напряжение. Кстати ЛАТР – это основа электромеханических, или, как их ещё называют, сервоприводных стабилизаторов напряжения.

При одинаковой мощности преимущества автотрансформаторов перед трансформаторами заключаются в пониженном расходе меди и электротехнической стали для сердечника. При этом КПД автотрансформаторов достигает 99,7%. Но преимущества тем больше выражены, чем больше Sэ, и меньше расчётная часть Sрасч проходной мощности, то есть при низких коэффициентах трансформации. И все преимущества исчезают при больших коэффициентах трансформации.

Применение автотрансформаторов для преобразования в сетях высокого напряжения улучшает КПД энергосистем, снижает стоимость передачи энергии, но приводит к увеличению токов короткого замыкания.

Кроме этого, у автотрансформаторов есть серьёзный недостаток — гальваническая связь с питающей сетью. Это значит, что напряжение на вторичной обмотке может оказаться таким же, как на первичной. Поэтому с целью обеспечения электробезопасности использование автотрансформаторов для питания переносных светильников сверхнизкого напряжения запрещается (ПТЭЭП п.2.12.6 и ряд других документов), а также для питания другого оборудования, на котором работают люди. По этой же причине нельзя использовать автотрансформаторы в качестве силовых для понижения 6-10 кВ до 0,4 кВ.

Из-за наличия электрической связи между обмотками вытекает ещё один недостаток – необходимо выполнять изоляции обеих обмоток на большее напряжение, по сравнению с обычными трансформаторами.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Электрика и не только
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: