Что лучше проводит тепло алюминий или медь msi core frozr xl

Рекомендации по выбору медных приборов отопления

Медно-алюминиевые радиаторы отопления классифицируют как устройства конвекционного типа. Холодный воздух, сползающий с окон, нагревается при прохождении между пластинами или ребрами батарей, поднимаясь с ускорением.

Эти биметаллические приборы обычно дороже алюминиево-стальных аналогов, но их качество не вызывает сомнение, они имеют более продолжительный срок эксплуатации. Чаще всего именно медно-алюминиевые батареи занимают первые места рейтингов.

При покупке стоит обращать внимание не только на стоимость изделий, но, в первую очередь, на параметры теплоотдачи в соотношении с объемом воздуха в комнате. Все важные характеристики указываются в описании к модели или техническом паспорте

Медные батареи занимают первые места рейтингов

Есть общие термины и сокращения. Например, РБ (радиатор с боковым подсоединением), РБД (боковой диагональный способ подключения) или РНБ (нижний боковой). Наиболее качественный и быстрый монтаж медных изделий обеспечивает резьбовое соединение, за пайку берутся только специалисты.

Медные батареи прогреваются быстрее других разновидностей, объем циркулирующего в них теплоносителя проходит примерно вдвое быстрее при самотечной системе замкнутого цикла. Поэтому им отдают предпочтение для частного сектора – небольшие блоки обогрева помещения имею более высокий КПД, чем громоздкие чугунные батареи или легкие стальные радиаторы панельного типа.

Конструкция алюминиевых радиаторов

Конструктивно все алюминиевые радиаторы состоят из отдельных секций, изготовленных из различных сплавов алюминия с другими металлами. При их изготовлении применяют несколько методов.

Секции могут быть:

  1. Литыми. При таком методе производства секции алюминиевых радиаторов отливаются целиком.
  2. Экструдированными. В этом случае формируют несколько частей секции, которые потом соединяются специальными прокладками и клеем.
  3. Гибридными. При этом методе сразу отливаются 2—3 секции, соединяемые затем с коллекторными блоками электрохимической сваркой. Такие радиаторы выпускает итальянская компания Rovall.

Цельнолитые секции более устойчивы к разрывам, но поскольку их производство сложнее, то и цена таких изделий выше. В европейских странах предпочтение отдается литым батареям, а в нашей стране — изготовленным методом экструзии.

Благодаря секционной конструкции можно создавать отопительные батареи именно с тем количеством секций, которое было определено с учетом размеров помещения и других, влияющих на теплообмен характеристик.

Биметаллические радиаторы отопления; какие лучше; инструкция по выбору

Первые радиаторы отопления, производимые из двух металлов (биметаллические) появились в странах Европы более шестидесяти лет назад. Такие радиаторы вполне справлялись с возложенной функцией поддержания комфортной температуры в помещении в холодное время года. В настоящее время производство биметаллических радиаторов возобновлено в России, на европейском рынке в свою очередь преобладают различные радиаторы из алюминиевого сплава.

Биметаллические радиаторы отопления какие лучше

Биметаллические радиаторы представляют собой каркас из стальных или медных полых труб (горизонтальных и вертикальных), внутри которых циркулирует теплоноситель. Снаружи на трубах прикреплены алюминиевые радиаторные пластины. Их присоединяют способом точечной сварки или методом специального литья под давлением. Каждая секция радиатора соединена с другой стальными ниппелями с термостойкими (до двухсот градусов) каучуковыми прокладками.

Конструкция биметаллического радиатора

В российских городских квартирах с централизованным отоплением радиаторы такого типа прекрасно выдерживают давление до 25 атмосфер (при опрессовке до 37 атмосфер) и благодаря высокой теплоотдаче выполняют свою функцию гораздо лучше своих чугунных предшественников.

Радиатор — фото

Внешне отличить биметаллические и алюминиевые радиаторы достаточно сложно. Удостовериться в правильности выбора можно лишь сравнив вес указанных радиаторов. Биметаллический из-за стального сердечника будет тяжелее своего алюминиевого собрата примерно на 60% и вы совершите покупку безошибочно.

Устройство биметаллического радиатора изнутри

Положительные стороны использования биметаллических радиаторов

  • Биметаллические радиаторы панельного типа прекрасно вписываются в дизайн любого интерьера (жилые дома, офисы и т.д.), не занимая много места. Фасадная сторона радиатора может быть одна ли обе, размер и цветовая гамма секций разнообразны (допускается самостоятельное окрашивание). Отсутствие острых углов и слишком горячих панелей делает радиаторы из алюминия и стали пригодными даже для детских комнат. Кроме того, на рынке представлены модели, которые устанавливают вертикально без использования кронштейнов за счет дополнительно присутствующих ребер жесткости.
  • Срок службы радиаторов из сплава двух металлов достигает 25 лет.
  • Биметалл подходит для всех систем отопления, в том числе и для центральной. Как известно, некачественный теплоноситель в муниципальных системах отопления отрицательно влияет на радиаторы, сокращая их срок службы, однако радиаторы из биметалла не боятся повышенной кислотности и низкого качества теплоносителей благодаря высокой коррозионной стойкости стали.
  • Биметаллические радиаторы – эталон прочности и надежности. Даже если давление в системе доходит до 35-37 атмосфер, это не повредит батареи.
  • Высокая теплоотдача – одно из главных преимуществ радиаторов из биметалла.
  • Регулирование температуры нагрева с помощью термостата происходит практически молниеносно за счет небольшого сечения каналов в радиаторе. Этот же фактор позволяет вдвое сократить объем используемого теплоносителя.
  • Даже если возникнет необходимость в ремонте одной из секций радиатора, благодаря продуманной конструкции ниппелей работы займут минимум времени и усилий.
  • Количество необходимых для обогрева помещения секций радиатора легко рассчитать математически. Это исключает лишние финансовые затраты при покупке, монтаже и эксплуатации радиаторов.

Отрицательные стороны использования биметаллических радиаторов

  • Как уже говорилось выше, биметаллические радиаторы пригодны к эксплуатации с теплоносителем низкого качества, однако последний существенно снижает срок службы радиатора.
  • Главный минус биметаллической батареи – разный коэффициент расширения у алюминиевого сплава и стали. После длительной эксплуатации может возникнуть скрип и снижение прочности и долговечности радиатора.
  • При эксплуатации радиаторов с некачественным теплоносителем возможно быстрое засорение стальных трубок, возникновение коррозии, снижение уровня теплоотдачи.
  • К оспариваемому недостатку можно отнести стоимость радиаторов из биметалла. Она выше, чем у радиаторов из чугуна, стали и алюминия, но учитывая все преимущества, цена полностью оправдывает себя.

3 Минусы высокой теплопроводности

Низкая теплопроводность во многих случаях является нужным свойством – на этом основана теплоизоляция. Использование медных труб в системах отопления приводит к гораздо большим потерям тепла, чем при применении магистралей и разводок из других материалов. Медные трубопроводы требуют более тщательной теплоизоляции.

У меди высокая теплопроводность, что обуславливает достаточно сложный процесс монтажных и других работ, имеющих свою специфику. Сварка, пайка, резка меди требует более концентрированного нагрева, чем для стали, и зачастую предварительного и сопутствующего подогрева металла.

При газовой сварке меди необходимо использование горелок мощностью на 1–2 номера выше, чем для стальных деталей такой же толщины. Если медь толще 8–10 мм, рекомендуется работать с двумя или даже тремя горелками (часто сварку производят одной, а другими осуществляют подогрев). Сварочные работы на переменном токе электродами сопровождаются повышенным разбрызгиванием металла. Резак, достаточный для толщины высокохромистой стали в 300 мм, подойдет для резки латуни, бронзы (сплавы меди) толщиной до 150 мм, а чистой меди всего в 50 мм. Все работы связаны с значительно большими затратами на расходные материалы.

Правила подключения системы отопления с медными радиаторами

Медные радиаторы используют в однотрубных и двухтрубных системах отопления, они подходят для установки в схемы с естественной и принудительной циркуляцией, отлично работают в современных низкотемпературных отопительных системах и сочетаются с водогрейными котлами любого типа.

При монтаже системы с медными батареями крайне не рекомендуется использовать стальные трубы по ходу движения теплоносителя – такое сочетание может стать причиной разрушительной электромеханической реакции. Лучше отдавать предпочтение медным трубам, но если это невозможно, нужно подобрать латунные фитинги для соединения разных металлов.

Результат тесного соседства меди и стали

Фитинги из латуни

Идеальное место для монтажа радиатора – участок под оконным проемом. При таком расположении образуется тепловая завеса, отсекающая прохладный воздух, поступающий с улицы. Чтобы обеспечить нормальную циркуляцию теплого воздуха, нужно оставить между прибором и подоконником расстояние не менее 15 см и обеспечить небольшой промежуток между батарей и стеной (не менее 3 – 5 см). Монтаж выполняют при помощи анкерных креплений или подпорочных стоек.

В остальном установка системы отопления с медными батареями ничем не отличается от монтажа любой другой водяной отопительной системы. Выполнить эту работу одному сложно, а новичку лучше не экспериментировать, а сразу доверить процесс профессионалам.

Исправление ошибок

Иногда, неправильно произведенные замеры помещения, приводят к неверным расчетам. Установленный радиатор отопления работает неэффективно, в помещении прохладно. Не стоит сразу же бросаться и делать новый прибор, затрачивая и время, и деньги. Есть способ, как можно повысить тепловую отдачу.

Для этого необходимо увеличить площадь нагрева. Единственный в данном случае вариант – приварить к трубной конструкции ребра из металлического листа толщиною 1,0-2,0 мм. Форма ребер может быть разной, главное – их площадь.

Поэтому из листа железа вырезаются, к примеру, прямоугольные куски размерами по длине больше высоты радиатора, по ширине 100-150 мм. В них с одной стороны вырезаются полукруги диаметром 100 мм. На каждом куске листа по два полукруга, расстояние между которыми определяется промежутком между двумя трубами в батарее.

Готовые формы привариваются к отопительной конструкции. Чем их больше, тем выше теплоотдача прибора.

Немного о теплопроводности

Под теплопроводностью в физике понимают перемещение энергии в объекте от более нагретых мельчайших частиц к менее нагретым. Благодаря этому процессу выравнивается температура рассматриваемого предмета в целом. Величина способности проводить тепло характеризуется коэффициентом теплопроводности. Данный параметр равен количеству тепла, которое пропускает через себя материал толщиной 1 метр через площадь поверхности 1 м2 в течение одной секунды при единичной разнице температур.

Материал Коэффициент теплопроводности, Вт/(м*К)
Серебро 428
Медь 394
Алюминий 220
Железо 74
Сталь 45
Свинец 35
Кирпич 0,77

Медь обладает коэффициентом теплопроводности 394 Вт/(м*К) при температуре от 20 до 100 °С. Соперничать с ней может только серебро. А у стали и железа этот показатель ниже в 9 и 6 раз соответственно (см. таблицу). Стоит отметить, что теплопроводность изделий, изготовленных из меди, в значительной мере зависит от примесей (впрочем, это касается и других металлов). Например, скорость проводимости тепла снижается, если в медь попадают такие вещества, как:

  • железо;
  • мышьяк;
  • кислород;
  • селен;
  • алюминий;
  • сурьма;
  • фосфор;
  • сера.


Медная проволока

Если добавить к меди цинк, то получится латунь, у которой коэффициент теплопроводности намного ниже. В то же время добавление других веществ в медь позволяет существенно снизить стоимость готовых изделий и придать им такие характеристики, как прочность и износостойкость. К примеру, для латуни характерны более высокие технологические, механические и антифрикционные свойства.

Поскольку для высокой теплопроводности характерно быстрым распространение энергии нагрева по всему предмету, медь получила широкое применение в системах теплообмена. На данный момент из нее изготавливают радиаторы и трубки для холодильников, вакуумных установок и автомашин для быстрого отвода тепла. Также медные элементы применяют в отопительных установках, но уже для обогрева.


Медный радиатор отопления

Чтобы поддерживать теплопроводность металла на высоком уровне (а значит, делать работу устройств из меди максимально эффективной), во всех системах теплообмена используют принудительный обдув вентиляторами. Такое решение вызвано тем, что при повышении температуры среды теплопроводность любого материала существенно понижается, ведь теплоотдача замедляется.

Коэффициенты теплопроводности алюминиевых, медных и никелевых сплавов

Теплопроводность металлов, алюминиевых, медных и никелевых сплавов в таблице дана в интервале температуры от 0 до 600°С в размерности Вт/(м·град). Металлы и сплавы: алюминий, алюминиевые сплавы, дюралюминий, латунь, медь, монель, нейзильбер, нихром, нихром железистый, сталь мягкая. Алюминиевые сплавы имеют большую теплопроводность, чем латунь и сплавы никеля.

Не стоит забывать и о том, что медные трубы требуют тщательной изоляции в том случае, если из них состоит магистраль или разводка системы отопления. Что приводит к увеличению стоимости монтажа сети в сравнении с вариантами, когда применяются другие материалы.

Следует сказать и о необходимости использования специальных инструментов. Так, для резки латуни и бронзы толщиной до 15 см понадобится резак, способный работать с высокохромистой сталью толщиной в 30 см. Причем этого же инструмента хватит для работы с чистой медью толщиной всего лишь в 5 см.

Плазменная резка меди

Мнение эксперта
It-Technology, Cпециалист по электроэнергетике и электронике
Задавайте вопросы «Специалисту по модернизации систем энергогенерации»

Bequiet! Dark Rock 4 Чугунные батареи в этой сравнительной системе параметров значительно проигрывают, у них низкая теплоотдача, большой вес отопительного прибора. Спрашивайте, я на связи!

Теплоемкость — железо

Распределение температуры.  

Теплоемкость железа С г представляет эквивалентную переменную теплоемкость, приведенную к температуре у поверхности во.  

Теплоемкость железа и стали при нагреве увеличивается. Например, при комнатной температуре теплоемкость железа 0 111 ккал / кг-град, при температуре 1200 С она увеличивается до 0 16 ккал / цг-град. Это значит, что при высоких температурах нагрев происходит медленнее и тепла затрачивается больше.  

Стр — теплоемкость железа, равная 0 12 кал / кг С.  

Учитывая же, что теплоемкость железа или стали равна 0 115, станет вполне понятным, что температура, получающаяся в ( результате трения лент Ферадо о шайбы барабана, достигнет колоссальных размеров и даже водяное, а тем более воздушное охлаждение не в состоянии будет отвести полностью эту теплоту.  

Теплоемкость твердых сплавов приблизительно в два раза ниже теплоемкости железа.  

Атомная теплоемкость железа.| Схема установки для определения теплопроводности металлических стержней. / — 6 — термопары. 7 — дьюаровский сосуд. 8 — печь. 9 — гальванометр. 10 — стержень. / / — кожух.  

На рис. 6 показано изменение атомной теплоемкости железа в зависимости от температуры. Теплоемкость железа достигает максимального значения в точке Аг, затем резко уменьшается; в точке А3 вновь уменьшается, а затем слегка увеличивается в а точке А и снижается в точке плавления. Резкое возрастание теплоемкости вблизи точки Кюри объясняется изменением магнитного состояния железа.  

Температура плавления 5 равна 1808 К, энтальпия плавления составляет 1 536 104 Дж / моль. Теплоемкость железа в жидком состоянии превышает его теплоемкость в кристаллическом состоянии примерно на 1 3 Дж / К моль.  

Теплоемкость железа и стали при нагреве увеличивается. Например, при комнатной температуре теплоемкость железа 0 111 ккал / кг-град, при температуре 1200 С она увеличивается до 0 16 ккал / цг-град. Это значит, что при высоких температурах нагрев происходит медленнее и тепла затрачивается больше.  

В таблицах находим величины теплоемкостей серы п железа. Для железа суд 0 46 кдж / кг град; килограмм-атомная теплоемкость железа равна 0 46 — 55 85 25 7 кдж / кг-ат-град. Килограмм-атомная теплоемкость серы равна 22 6 кдж / кг-ат-град.  

При увеличении или уменьшении каким-либо способом количества тепла, содержащегося в теле, увеличивается или уменьшается также температура тела. Но для одинакового изменения температуры в различных по составу телах равного веса требуются различные количества теплоты. Так, например, 1 кг воды требует примерно в 9 раз больше тепла, чем 1 кг железа при одинаковой степени нагре-тости. На этом основании говорят, что теплоемкость железа составляет около одной десятой теплоемкости воды. Способность воспринимать тепло зависит от физических свойств вещества. Количество тепла, необходимое для изменения температуры 1 кг вещества на 1 С, называется удельной теплоемкостью вещества или просто теплоемкостью.  

При сообщении телу теплоты или, наоборот, отнятии ее у тела происходит увеличение или уменьшение температуры этого тела. Но для одинакового изменения температуры различных по составу тел равной массы требуются различные количества теплоты. Так, 1 кг воды требует примерно в 9 раз больше теплоты, чем 1 кг железа, при одинаковой степени нагретости. На этом основании говорят, что теплоемкость железа составляет около 0 1 теплоемкости воды и, следовательно, теплоемкость зависит от физических свойств вещества.  

В большинстве случаев шаровая молния оплавляет или испаряет несколько граммов или даже доли грамма металла. Автор письма подробно описал размеры лунки и специально отметил, что наплывов металла не было: металл испарился. Предполагая, что углубление было в виде параболоида вращения, находим, что испарилось около 0 22 г металла. Теплоемкость железа равна 0 71 Дж / ( г — К) в твердом и 0 84 Дж / ( г — К) в жидком состоянии. Точки плавления и кипения равны 1500 и 2900 С, а теплота плавления и парообразования — соответственно 269 и 6270 Дж / г. В результате оказывается, что для испарения 0 22 г железа требуется не менее 2 кДж тепла.  

Эффективность теплоотдачи радиаторов из меди и алюминия

Технические характеристики алюминия и меди отличает высокая теплоотдача. По сравнению с традиционными чугунными радиаторами, коэффициент отдачи тепла выше в 3-4, из алюминия и стали в 2 раза. И у биметалла есть свои преимущества и недостатки.

Преимущества радиаторов из меди и алюминия

В качестве плюсов биметалла можно выделить следующие характеристики:

  • Теплопроводность.
  • Возможность точно контролировать процесс нагрева и избежать перегрева теплоносителя.
  • Длительный срок эксплуатации.
  • Использование биметалла позволяет усилить каркас конструкции и увеличивает устойчивость к механическим повреждениям и гидроударам.
  • Меньшая стоимость по сравнению с радиаторами из чистой меди.
  • Максимально допустимое давление теплоносителя 16 атм., что делает возможной эксплуатацию радиатора в многоэтажном доме. Конечно, при условии соответствия химического состава жидкости, используемой в системе отопления. Рабочее давление 14 атм., максимальный нагрев теплоносителя до 150°С. Технические характеристики позволяют устанавливать радиатор в многоэтажке до 9 этажа.

Недостатки биметалла

Существуют определенные минусы медно-алюминиевых радиаторов. А именно:

  • Высокие нормы по установке. Медь мягкий металл, соединения легко перетянуть и испортить резьбу. Радиаторы устанавливаются по уровню. Исключаются отклонения от горизонтальной или вертикальной плоскости. Обязательно монтируется сетчатый фильтр, устанавливаемый на подачу теплоносителя.
  • Требования к качеству теплоносителя. Оптимальный вариант – это дистиллированная вода без присадок. В обычный теплоноситель центральной системы отопления добавляют специальные добавки для уменьшения теплопотерь. Вещества разъедают медный контур и приводят к быстрому выходу из строя медного сердечника.

Еще одним распространенным недостатком биметаллических батарей является шум во время работы. Треск является показателем, что радиатор достиг пиковой нагрузки, и является следствием неправильного расчета мощности отопительных приборов.

Методы измерения

Для измерения теплопроводности металлов используют два метода: стационарный и нестационарный. Первый характеризуется достижением постоянной величины изменившейся температуры на контролируемой поверхности, а второй – при частичном изменении таковой.

Стационарное измерение проводится опытным путем, требует большого количества времени, а также применения исследуемого металла в виде заготовок правильной формы, с плоскими поверхностями. Образец располагают между нагретой и охлажденной поверхностью, а после прикосновения плоскостей, измеряют время, за которое заготовка может увеличить температуру прохладной опоры на один градус по Кельвину. Когда рассчитывают теплопроводность, обязательно учитывают размеры исследуемого образца.

Нестационарную методику исследований используют в редких случаях из-за того, что результат, зачастую, бывает необъективным. В наши дни никто, кроме ученых, не занимается измерением коэффициента, все используют, давно выведенные опытным путем, значения для различных материалов. Это обусловлено постоянством данного параметра при сохранении химического состава изделия.

Что такое теплопроводность

Данный термин означает способность различных материалов к обмену энергией, которая в этом случае представлена теплом. При этом передача энергии проходит от более нагретой части к холодной и происходит за счет:

  1. Молекул.
  2. Атомов.
  3. Электронов и других частиц структуры металла.

Теплопроводность нержавеющей стали будет существенно отличаться от аналогичного показателя другого металла — например, коэффициент теплопроводности меди будет иным, нежели у стали.

Для обозначения этого показателя используется специальная величина, именуемая коэффициентом теплопроводности. Она характеризуется количеством теплоты, которое может пройти через материал за определенную единицу времени.

Показатели для стали

Теплопроводность может существенно отличаться в зависимости от химического состава металла. Коэффициент данной величины у стали и меди будет разным. Кроме этого, при повышении или уменьшении концентрации углерода изменяется и рассматриваемый показатель.

Существуют и другие особенности теплопроводности:

  1. Для стали, которая не имеет примесей, значение составляет 70 Вт/(м* К).
  2. У углеродистых и высоколегированных сталей проводимость намного ниже. За счет увеличения концентрации примесей она существенно снижается.
  3. Само термическое воздействие также может оказывать воздействие на структуру металла. Как правило, после нагрева структура меняет значение проводимости, что связано с изменением кристаллической решетки.

Коэффициент теплопроводности алюминия значительно выше, что связано с более низкой плотностью этого материала. Теплопроводность латуни также отличается от соответствующего показателя стали.

https://youtube.com/watch?v=Aa90TIZ6Pa0

Эксплуатация и обслуживание

Стальные радиаторы выпускаются в виде готовых панелей. Если неправильно выполнен расчет мощности батареи отопления, то придется добавлять новую.

С алюминиевым радиатором все проще – при желании можно добавить одну или несколько секций, или убрать лишние. Сделать это можно собственноручно.

Срок службы алюминиевых радиаторов существенно зависит от производителя и модельного ряда. Самые дешевые начнут течь через 5 лет, или дадут трещину при небольшом гидроударе (см. фото). А дорогие модели смогут прослужить 20 лет и более.

Лопнувший из-за гидроудара алюминиевый радиатор.

Со стальными радиаторами сложнее. Они по определению на могут быть особо прочными – толстый металл ухудшит их теплопроводность. Поэтому они боятся большого давления, быстро изнашиваются при его перепадах.

Но если в системе стабильное рабочее давление и нет гидроударов и скачков, то стальной панельный радиатор может отслужить и 15 лет. Кроме того, в случае проблем его можно «подлатать». Сделать это гораздо проще, чем чинить алюминиевый.

Что касается особого ухода – ни стальные, ни алюминиевые его не требуют. Разве что нужно протирать их от пыли, что со стальным радиатором сделать проще.

Как выбрать и на что обратить внимание?

Производством отопительных приборов из алюминия занимаются многие компании, но при выборе устройства следует обращать внимание не на бренд, а на технические характеристики изделия. Выбрать качественную алюминиевую батарею помогут такие рекомендации:

Выбрать качественную алюминиевую батарею помогут такие рекомендации:

По конструкции лучше отдать предпочтение литому радиатору

Он гораздо лучше выдерживает перепады давления в системе и может работать в любых условиях.

Следует обратить внимание и на внутреннее покрытие изделия. Надежные производители обрабатывают внутреннюю часть радиатора специальным составом, который формирует на поверхности оксидную пленку и защищает прибор от коррозии.

Желательно покупать радиатор в собранном виде и с нужным количеством секций — так как заводская скрутка обычно надежнее, чем проведенная самостоятельно.

Лучше отдавать предпочтение европейским производителям

Их устройства отличаются высоким качеством, а для производства не используются токсичные соединения. В китайских приборах подобные гарантии отсутствуют.

Также желательно приобретать устройство в специализированном магазине отопительной техники, а не на рынке.

Так покупатель будет защищен от покупки подделки.

Чем отличаются алюминиевые батареи от биметаллических

Алюминиевые радиаторы изготавливаются из одного металла и не имеют сердечника, биметаллические, напротив, имеют внутренние стальные трубки для циркуляции теплоносителя и внешние алюминиевые ребра для хорошей теплоотдачи.

Однако внешне оба вида изделий похожи и имеют привлекательный эстетичный вид, способный соответствовать любому интерьеру.

Показатели теплоотдачи

Поскольку внешняя часть, отвечающая за теплоотдачу у обоих типов батарей, изготовлена из алюминия, они имеют хорошие показатели теплоотдачи.

Но у изделий, состоящих только из одного металла она примерно на 15…20 % выше.

Устойчивость к коррозии

Антикоррозийная устойчивость выше у биметаллических батарей, так как теплоноситель циркулирует по стальным трубам, более устойчивым к коррозии, а также агрессивной среде.

Однако сталь также подвержена появлению ржавчины при попадании в систему воздушных масс, что возможно при сезонных сливах теплоносителя.

Стойкость к давлению и гидроударам

Благодаря внутренним стальным трубам, выдерживающим высокое рабочее давление жидкости и его перепады, биметаллическая батарея более устойчива к гидроударам.

https://youtube.com/watch?v=S71FHDaS1Ug

Легкость монтажа

Оба типа описываемых элементов системы подачи тепла монтируются легко, однако алюминиевые батареи обладают меньшим весом, что делает их установку несколько проще.

Срок службы

Возможность длительной эксплуатации зависит от многих факторов:

  • рабочего давления в системе;
  • химического состава теплоносителя;
  • наличия/отсутствия гидроударов;
  • температуре циркулирующей жидкости;
  • сезонных сливов теплоносителя.

Если радиатор подобран и установлен правильно, заявленный производителем срок службы составляет:

  • для алюминиевых изделий – 20…25 лет;
  • для биметаллических – 25…30 лет.

Взаимодействие с теплоносителями

Алюминиевые батареи сильно зависят от качества теплоносителя. При повышении уровня pH выше определенной величины они подвержены коррозии и дальнейшей протечке.

У биметаллических изделий с теплоносителем соприкасается стальная труба, более устойчивая к неблагоприятной среде и колебаниям pH.

А что надежнее, прочнее и долговечнее?

Давление, возникающее при испытательном запуске отопительной системы, может привести к поломке прибора. Алюминий плохо справляется с появлением гидравлического удара. А биметаллические батареи отлично с ним справляются.

Песок, ржавчина, другие мелкие частицы, появляющиеся в воде, оседают в трубах и забивают входные отверстия. Биметалл более устойчив к составу воды и лучше защищен от процесса коррозии.

Таким образом, по этим показателям лидером становятся биметаллические батареи. Это достигается за счет наличия двух металлов, соединяющих в себе лучшие качества. Срок службы таких элементов достигает 20 лет. Конечно, если выбирать качественный товар известных фирм-изготовителей. Алюминиевые изделия в этом аспекте ничем похвастаться не могут. Продолжительность их службы ограничена десятью годами.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Электрика и не только
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: