Устройство и принцип работы скважины теплонасоса
Автономное независимое отопление дома от скважины с тепловым насосом состоит из двух контуров:
Второй контур располагается в геотермальном насосе. По трубам циркулирует фреон и посредством преобразования из жидкости в газ отбирает тепло у первичного контура. О том, как работает геотермальный тепловой насос, описывается здесь.
Существует несколько типов первичного контура, отличающихся технологией бурения геотермальных скважин для тепловых насосов. Наиболее подходящий вид скважины определяется в зависимости от мощности тепловой станции и фактических ожидаемых затратах энергии зданием.
Проведение работ по бурению скважин под геотермальный тепловой насос начинается с составления проектной документации и проведения геодезического аудита на участке.
Виды скважин для подключения теплонасоса
Существует три основных типа решений, используемых для укладки геотермального первичного контура. Способы бурения скважин рассчитывают исходя из нескольких параметров:
-
- Общей придомовой площади.
-
- Типа грунта.
- Способа укладки трубопровода.
Работы выполняют следующим образом:
Наклонное кластерное бурение – используется, если возможности установки вертикальных зондов ограничены площадью участка. Бурение скважин под углом осуществляется следующим образом. Сначала выкапывают один общий колодец. Так как для конструкции требуется всего 4 м², бурить можно даже в подвале своего дома. Колодец углубляют до 4 м, устанавливают в нем специальное оборудование. Дальше выполняется бурение скважин под углом или «кустом». Работы выполняются с помощью специальной техники. Технология бурения для наружного контура «кустом» была разработана в Европе, где пользуется огромной популярностью. В нашей стране данная методика только начинает внедряться, поэтому еще не нашла широкого применения.
Производительность грунтового теплового насоса скважинного типа напрямую зависит от грамотно выбранной схемы разводки первичного контура.
Какое количество скважин нужно для работы теплового насоса
Необходимое количество скважин высчитывают исходя из типа грунта и производительности оборудования. Большую теплоотдачу обеспечивает земельный участок с неглубоким прохождением подземных вод, наименьший процент тепла можно получить из песка.
Расчет скважины теплонасоса выполняется в согласии со следующими параметрами:
Обычный грунт – по этим параметрам высчитывают среднее значение, равное 50 Вт на 1 п.м.
Глубина скважины для теплонасоса рассчитывается следующим образом:
Подсчитывают общее количество колодцев. Средняя глубина, принимаемая в расчет равняется 30 м. Для дома на 200 м², потребуется пробурить 10 скважин.
Если планируется уложить горизонтальный трубопровод, расчеты проводят несколько другим способом:
Длина водяного коллектора будет 460 п.м.
Традиционно используют диаметр скважин равный 150 мм. Диаметр обусловлен простотой бурения и размерами улаживаемого водяного контура.
Срок службы скважины под теплонасос
Производя расчет стоимости бурения необходимо учитывать, что минимальное время эксплуатации геотермального первичного зонда составляет не менее 50 лет. На время службы влияет то, какая труба используется для изготовления коллектора.
Расчетный срок эксплуатации нержавеющего металла составляет 70 лет, полимер прослужит 50-60 лет. В первый год укладки коллектора возможно проседание, требующее дополнительной корректировки и исправлений. В остальное время первичный контур будет работать с полной теплоотдачей и эффективностью.
Первоначальные затраты, отпугивающие потенциального покупателя, на самом деле полностью окупятся благодаря длительному сроку эксплуатации как самого насоса, так и геотермального контура.
Горизонтальный теплообменник геотермального теплового насоса
Монтаж горизонтального теплообменника самый простой и не требует значительных денежных затрат. Недостатком является большая занимаемая площадь, на которой не должно быть впоследствии строений и деревьев.
Раскладка такого теплообменника осуществляется на глубине ниже уровня промерзания грунта, обычно от 1 до 3 м в зависимости от географической местности и типа грунта.
Примеры прокладки горизонтальных зондов
Верхние слои почвы накапливают солнечное тепло и, по сути, являются аккумуляторами солнечной энергии. Поэтому температура верхних слоев грунта не равномерна в течение года и имеет сезонные колебания, что в свою очередь влияет на эффективность теплового насоса в сезонном цикле эксплуатации. К примеру на глубине 2 м температура почвы колеблется от 7 °С до 13 °С в течении года.
Температура грунта в зависимости от глубины и времени года
Съем тепла с каждого метра грунтового коллектора зависит от таких факторов как: глубина укладки, тип и влажность грунта, затенение площадки под теплообменник и т.д. В среднем значение составляет 20 Вт/м. Для более подробных расчетов следует обратиться к специалистам за детальным геологическим анализом почвы.
Шаг укладки труб не должен быть меньше 0,7 м для эффективной работы коллектора. Рекомендуется использовать контур общей длинной не более 150 м из-за большого гидравлического сопротивления. При применении нескольких контуров необходимо стараться, что бы каждый из них был примерно одинаковой длинны.
Принцип работы и схема теплового насоса
Теплонасосы способны работают от натуральных источников энергии. Прибор выделяет тепло без дизельного или твердого топлива.
Сам насос не может выделить тепло, он просто переносит его в дом. На это требуется небольшое количество электричества. Достаточно иметь тепловой насос и внешний источник энергии для обогрева здания. Работает насос противоположно холодильнику. Тепло забирается снаружи и направляется в помещение.
Тепловой нанос черпает энергию из земли, воды или воздуха
Схема теплового насоса:
- Компрессор – промежуточный элемент системы;
- Испаритель – элемент передачи низкопотенциальной энергии;
- Дроссельный клапан – по нему перемещается фреон в испаритель;
- Конденсатор – в нем хладагент охлаждается и отдает свое тепло.
Сначала энергия выделяется из природных источников и попадает в испаритель. Дальше тепло передается фреону. В компрессоре хладагент поддается высокому давлению и его температура повышается. Дальше фреон направляется в конденсатор, где и происходит его отдача отопительной системе. Хладагент возвращается в испаритель, где процесс повторяется.
Виды геотермального теплоснабжения дома
Схема геотермального отопления Перед тем как делать геотермальное отопление загородного дома своими руками следует провести ряд предварительных мероприятий. Прежде всего — найти оптимальный способ расположения труб первичного контура.
Главным условием при этом является температура среды, где будут расположены магистрали. Она не должна быть ниже +7°С. На практике для этого выполняют монтаж трубопроводов в грунт. В некоторых случаях в качестве основной среды может выступать водоем или река. Однако отзывы о геотермальном отоплении дома такого типа зачастую говорят о низкой эффективности в зимний период.
Для правильной организации альтернативного теплоснабжения необходимо выполнить следующие действия:
Рассчитать оптимальную мощность. Если геотермальное отопление частного дома будет в качестве основного – его номинальная мощность должна обеспечить нагрев воздуха во всем здании.
Провести анализ состава грунта и глубину его промерзания. От этого зависит выбор схемы расположения труб первичного контура.
Определить месторасположение теплового насоса. Для минимизации тепловых потерь геотермальные системы отопления своими руками обустраиваются в отдельном помещении – подвале или хозяйственной постройке
Важно, чтобы температура в нем была не ниже +14°С.
Несоблюдение этих простых правил может привести к неправильной работе системы
Нередко отзывы владельцев геотермального отопления указывают на важность первичного анализа и подбор правильного оборудования
С горизонтальным размещением
Горизонтальный контур Наименее трудоемкий способ установки труб первичного контура является горизонтальным. Они располагаются на глубине от 0,5 до 3 м. Для уменьшения площади магистрали располагаются витками. Но при этом расстояние до каждой должно быть не менее 20 см.
До того как сделать геотермальное отопление — проводится первичный анализ состояния грунта. Сначала определяется его теплоотдача. Она может составлять от 20 до Вт/м². Исходя из этого рассчитывается общая протяженность первичного контура.
Кроме этого следует выполнить такие действия:
- Проверка уровня промерзания почвы. Глубина залегания труб должна быть ниже этого показателя;
- Грунтовые воды. Для их естественного удаления в период больших паводков на дно котлована засыпается песчаный слой;
- Выбор материала изготовления трубопроводов. Он должен быть достаточного гибок и механически надежен. Для геотермального отопления в Европе чаще всего используют трубы из сшитого полиэтилена.
С вертикальными трубопроводами
Вертикальная схема работы Учитывая основные принципы работы геотермального отопления дома во время проектирования необходимо добиться максимального нагрева теплоносителя от земли. Это можно сделать только при установке вертикальных магистралей.
Для организации геотермального отопления загородного дома своими руками вертикального типа необходимо сделать скважины, глубиной от 30 до 100 м. В них помещаются трубопроводы первичного контура.
Такая схема более трудоемка, чем вертикальная, но имеет ряд преимуществ:
- Большая глубина залегания магистралей. В этом случае теплоотдача окружающей среды повышается на 25-30% — до 70 Вт/м²;
- Небольшая площадь для монтажа;
- Практически отсутствует зависимость от промерзания грунта.
Кроме этого способа нередко применяют основные принципы работы геотермального отопления для горячего водоснабжения в летний период. Для этого первичный контур помещают в воду — озеро или реку.
Перед бурением скважин необходимо сделать анализ почвы и определить оптимальную глубину. Состав почвы напрямую скажется на трудоемкости процесса.
DXplast: уникальный контур прямого испарения из пластика
Эта технология является авторской разработкой конструкторского бюро ООО «Геотермал», ТОО «SUNDUE», при поддержке фонда «Сколково». DXplast – это первый полностью пластиковый контур прямого испарения. До геоконтура DXplast ряд компаний неоднократно пытались разработать пластиковый испаритель, однако все эти попытки заканчивались неудачей. Это принципиально новое решение, полностью заменяющее дорогостоящий DX контур из меди, который на текущий момент устарел как технически, так и морально. В ближайшее время эта разработка станет причиной значительных изменений на рынке геотермальных тепловых насосов.
Затопленный испаритель DXplast на 100% изготавливается из пластика со специальными добавками, которые делают этот материал непроницаемым для газов, повышают адгезию и теплопроводность. Это ноу-хау вобрало в себя все лучшее, что было разработано в данной области. Срок службы геоконтура – 50 лет и более.
Характеристики. Пластиковый контур для насоса обеспечивает отъём тепла из грунта (глина, супесь, суглинки) с мощностью 10-13 Вт с 1 погонного метра трубы. Система поставляется комплектом, полностью готовым для установки. Для монтажа 24 элементов системы DXplast используется аппарат для раструбной сварки труб ПНД.
Сравнение dx геоконтура и аналога из меди. Традиционный DX испаритель изготавливается из медной (либо нержавеющей) трубы и обходится в 750 рублей за один погонный метр контура. Комплект медного геотермального контура включает в себя более 60 элементов и соединений для пайки. Для установки такой системы нужно дорогостоящее газобаллонное оборудование и труб высококвалифицированных специалистов, обладающих навыками в пайке меди.
Кроме самих медных труб также потребуются расходные материалы – флюсы и припои, электроды. Стоимость такого проекта «под ключ» составляет 700 тысяч рублей. К его преимуществам можно отнести отсутствие необходимости в обслуживании и высокий КПД.
Главные недостатки медного геотермального контура:
- высокая стоимость материалов и работ;
- трудоёмкий монтаж;
- электрическая коррозия;
- высокая стоимость самого контура (обходится дороже стоимости теплового насоса, для которого он используется);
- короткий срок эксплуатации системы – 20 лет.
В сравнении с ним пластиковый Xplast геоконтур имеет ряд достоинств.
Параметры и принцип действия скважин для тепловых насосов
Скважина, созданная для функционирования теплового насоса, предполагает наличие внутри контура. По данному контуру циркулирует специальный жидкий состав, обладающий специфическими свойствами. Данный состав не затвердевает даже при собственной отрицательной температуре. Как правило, для этой цели используется пропиленгликоль, именуемый также рассолом.
Контур уходит вглубь до самого дна скважины, где контактируя с грунтом, находящимся ниже глубины промерзания почвы нагревается. Пропиленгликоль на входе в скважину имеет температуру порядка минус одного градуса по Цельсию, а выходя из скважины, прогревается до 6-8 градусов. Этой температуры вполне достаточно для эффективного обогрева.
Бурение скважин под тепловые насосы
На выходе осуществляется теплообмен между скважинным контуром и наружным контуром, в котором циркулирует хладагент. При контакте контуров хладагент разогревается и переходит в газообразное состояние. После чего происходит повторный теплообмен аналогично общим принципам действия всех тепловых насосов.
Количество необходимых под теплонасос скважин
Расчет количества скважин, бурение которых необходимо для эффективного функционирования тепловых насосов зависит от ряда факторов. Здесь играют роль и тип грунта, преобладающий на участке бурения, и технические характеристики самого оборудования. Выделяют следующие зависимости эффективности теплоотдачи от типов грунта:
- При заложении первичного контура в песчаные, либо другие сухие грунты теплоотдача от одного погонного метра контура составит порядка 30 ватт.
- Грунты с высоким содержанием влаги будут уже более эффективны, данный показатель у них колеблется на уровне 60 ватт. Грунты обладают такими свойствами при относительно неглубоком нахождении подземных водоемов.
- Твердые каменные породы обладают наивысшим показателем эффективности теплоотдачи. У них он колеблется от 65 до 85 ватт на погонный метр контура.
- Обычный земляной грунт умеренного увлажнения может похвастаться показателем теплопередачи порядка 50 ватт на метр. Так как данный тип грунтов является преобладающим, показатель теплоотдачи в 50 ватт принимают за усредненную величину.
Если существует такая возможность, то перед бурением скважин лучше провести локальную геологоразведку. Если же ее нет, рекомендуется использовать усредненный показатель.
Кроме типа грунта потребуется уточнить еще несколько параметров. Итак, расчет количества скважин можно провести следующим образом:
- Определяется либо берется средний показатель эффективности теплоотдачи грунта. Для примера возьмем среднюю величину 50 ватт.
- Рассчитывается требуемая для нужд конкретного здания мощность теплового насоса. Ориентировочно ее можно определить из расчета 0.7 киловатт на 10 квадратных метров помещения. Таким образом, для дома общей площадью 100 квадратный метров, требуемая мощность агрегата будет равна 7 киловатт или 7000 ватт. Стоит отметить, что данный показатель определен при условии хорошей теплоизоляции дома и стандартной высоте потолков 270 сантиметров.
- Определяется необходимая протяженность контура: 7000 ватт делим на 50 ватт на метр, получаем протяженность контура 140 метров.
- При средней глубине скважины 30 метров, проведя расчет и округление, получим количество равное 5 скважинам.
Срок исправного функционирования скважин
Насколько долгий период времени прослужит пробуренная для теплового насоса скважина, зависит от качества самого бурения и материала, использованного при ее обустройстве.
Львиную долю материалов в скважине составляет коллектор. Если изготовить его из металла, устойчивого к коррозии, он прослужит вплоть до 70 лет. Использование полимерной трубы позволит коллектору продержаться порядка 50-60 лет.
Однако не стоит сразу по окончании работ по обустройству скважины забывать о ней. Как минимум в течение одного года следует проводить мониторинг состояния скважины, так как грунт подвержен оседанию. В случае влияния оседания грунта на целостность скважины, нужно оперативно произвести ремонтные воздействия в ее отношении.
Как работает тепловой насос
Внешне он напоминает небольшой холодильник, среди основных элементов которого стоит выделить:
- ЭРВ: устройство дросселирующее фреон. Жидкий охлажденный хладагент под высоким давлением впрыскивается в испаритель с низким давлением.
- Испаритель. Здесь хладагент испаряется и холодный газ поглощает окружающее тепло.
- Компрессор, в котором нагнетается давление, благодаря чему газ разогревается до +70 градусов.
- Конденсатор: сюда подается горячий газообразный фреон из компрессора, чтобы, конденсируясь и отдавая тепло снова, превратиться в жидкость. Через стенки конденсатора осуществляется теплообмен фреона и теплоносителя, циркулирующего в системе отопления здания.
Уникальность теплового насоса (ТН) в том, что он в жаркое время года может работать, как система охлаждения. Наиболее эффективно использовать это устройство с низкотемпературной системой отопления, теплыми полами либо фанкойлами. При выборе насоса стоит учитывать нижеследующие параметры:
- СОР. Аббревиатура принята во многих странах мира и указывает на рентабельность ТН. Например, СОР 4 означает, что на 1 кВт потребляемого электричества вырабатывается 4 кВт тепловой энергии. Следует заметить, что СОР теплового насоса будет максимальным в случае, когда разница между низкопотенциальным источником и теплоносителем в системе отопления не будет превышать 40 градусов.
- Контроллер. Наличие в составе ТН встроенного контроллера и автоматики управления устройством, говорит о том, что все собрано и протестировано на заводе изготовителе.
- Компрессор. Современные холодильные системы все больше переходят на инверторные модели с частотным регулированием мощности.
- Русификация. На первом этапе пользовательского освоения ТН, меню на русском языке сильно облегчает задачи по управлению и программированию устройства.
Что такое геотермальный тепловой насос
Геотермальный тепловой насос – это система для передвижения и превращения тепловой энергии из низкопотенциального объекта в более высокую. Он чем-то похож на холодильную систему.
Устройство
Грунтовой тепловой насос состоит из:
- Контура, который принимает низкопотенциальную энергию от объекта
- Контура, который циркулирует фреон. Последний получает тепло, когда испаряется, и возвращает при конденсации.
- Водяного контура, который сообщает тепловую энергию от установки к радиаторам
Принцип работы геотермального теплового насоса
- Жидкий хладагент (фреон) испаряется в системе, а тепло поглощается.
- Фреон, сжатый компрессором, опять становится жидким. Теплообменник получает накопившуюся энергию.
- Благодаря теплообменнику, вода становится теплее, двигается по системе и нагревает помещение, доходя до батарей.
В процессе температура резко меняется от примерно 8°C до +60°C в теплообменнике под давлением. Благодаря дроссельному клапану все начинается сначала. Схема передачи тепловой энергии такая же как в холодильной установке, хотя сама цель совсем другая. Геотермальный насос для отопления поднимает температуру в комнате, не сжигая электричество и другие ресурсы, а холодильник наоборот понижает ее для долгосрочного хранения продуктов.
Преимущества
+ Экологичность. Геотермальный тепловой насос не нуждается в сжигании ресурсов, портящих окружающую среду. Он работает на естественном тепле недр земли.
+Доступность. Монтаж не требует специальных разрешений, то есть любое частное лицо может установить устройство на своем участке.
+Высокая эффективность. Тепловые насосы более эффективны, чем другие альтернативные способы получения энергии. Из 1кВт потраченной энергии получается 5кВт тепла, которое можно использовать для отопления, теплых полов, кондиционирования и горячего водоснабжения.
+ Безопасность и долговечность. Геотермальные системы не зависят от внешних факторов или кризисов, поэтому обеспечивают стабильность.
Недостатки
— Окупаемость. В зависимости от технических параметров и конкретных условий срок окупаемости варьируется от 3 до 10 лет. Крайне высокая стоимость отменяет массовый спрос на эту технологию.
— Территория. Система геотермальных тепловых насосов занимает огромное количество места. Кластерное бурение, которое требует всего 4м², стоит дороже, чем горизонтальные геотермальные контура.
— Сложное подключение. Отчасти пересекается с предыдущим пунктом. Если частный дом находится близко к остальным, то, возможно, подключение газа будет намного дешевле. Не говоря уже о легкости подключения.
Бурение скважин для системы тепловых насосов
Устройство скважины лучше доверить профессиональной монтажной организации. Оптимально, чтобы этим занимались представители компании, продающей теплонасос. Так, можно учесть все нюансы бурения и расположения зондов от строения, выполнить другие требования.
Специализированная организация поспособствует получению разрешения на бурение скважины под зонды для грунтового теплового насоса. Согласно законодательству, использование грунтовых вод в хозяйственных целях запрещено. Речь идет об использовании в любых целях вод, расположенных ниже первого водоносного горизонта.
Как правило, процедура бурения вертикальных систем должна быть согласована с органами государственной администрации. Отсутствие разрешений ведет к штрафным санкциям.
После получения всех необходимых документов начинаются монтажные работы, согласно следующему порядку:
Завозится оборудование для бурения, а также техника, необходимая для выполнения ландшафтных работ. Для вертикальной и горизонтальной установки требуется буровой и отбойный молоток. Для сверления грунта под углом используются буровые установки с веерным контуром. Наибольшее применение получила модель, работающая на гусеничном ходу. В полученные скважины укладывают зонды и заполняют зазоры специальными растворами.
Какая глубина скважины должна быть
Глубина рассчитывается исходя из нескольких факторов:
Расчет глубины бурения скважины под зонды выполняется с учетом следующего: общая площадь придомовой территории, наличие грунтовых вод и артезианских скважин, общая отапливаемая площадь. Так, к примеру, глубина бурения скважин с высокими грунтовыми водами резко сокращается, по сравнению с изготовлением колодцев в песчаной почве.
Создание геотермальных скважин – сложный технический процесс. Все работы, начиная с проектной документации и заканчивая введением теплового насоса в эксплуатацию должны выполнять исключительно специалисты.
Чтобы подсчитать приблизительную стоимость работ используют он-лайн калькуляторы. Программы помогают высчитать объем воды в скважине (влияет на количество необходимого пропиленгликоля) ее глубину и выполнить остальные расчеты.
Чем заполнить скважину
Выбор материалов зачастую полностью ложится на самих хозяев
Подрядная организация может советовать обратить внимание на тип трубы и рекомендовать состав для заполнения скважины, но окончательное решение придется принимать самостоятельно. Какие есть варианты?
Материал для заполнения зазоров между трубой и грунтом. Тампонирование скважины является обязательным правилом к выполнению. Если не заполнить пространство между трубой и грунтом, со временем происходит усадка, способная повредить целостность контура. Зазоры заполняют любым строительным материалом с хорошей теплопроводимостью и эластичностью, типа Бетонит. Заполнение скважины для теплонасоса не должно препятствовать нормальной циркуляции тепла от грунта к коллектору. Работы выполняют медленно, чтобы не оставить пустот.
Что лучше для теплового насоса – земляной коллектор или скважина
Технические характеристики скважины выглядят привлекательней, но проведение работ по бурению грунта невозможно выполнить без специализированного оборудования и техники. Горизонтальный коллектор можно уложить самостоятельно, но забор тепла от земли будет меньше практически в 2 раза.
Применение скважины оправдано еще по той причине, что это не отражается на ландшафтном дизайне. Так, сверху горизонтального контура запрещается сажать деревья с глубокой корневой системой, к вертикальному коллектору подобные требования не предъявляются.
Устройство геотермальной скважины ТН, выполненной с наклонным направлением, вариант практически не имеющий недостатков и лишен всех минусов, присущих остальным вариантам. Размещается всего на 4 м² и обеспечивает максимальную теплоотдачу.
Затраты на бурение окупаются уже через 3-8 лет. Вариант со скважинами полностью оправдан и эффективен, несмотря на то, что потребуются первоначальные вложения средств.
Источник статьи: http://avtonomnoeteplo.ru/altenergiya/290-burenie-skvazhin-dlya-teplovyh-nasosov.html
Технология наклонно-кластерного бурения и два вида зондов.
Мы применяем ТОЛЬКО коаксиальные зонды зонды при наклонно-кластерном бурении из одного колодца!
Только с такими зондами зона вокруг колодца не замораживается и нет никаких проблем с ростом травы и деревьев. Мы это подтверждаем 9-ти летней практикой.
Использование U-образных зондов совместно с технологией наклонно-кластерного бурения приведёт к вымораживанию зоны вокруг колодца на расстоянии до нескольких метров от колодца!
Связанно это с близким расположением подающих холодных труб в колодце. На рис.№1 синими стрелочками показаны холодные трубы выходящие из колодца. Расстояние между ними в колодце 15-20 см. Такого недостатка лишён коаксиальный зонд, он конструктивно работает иначе. На рис.№2 синими стрелочками показаны внутренние утеплённые трубы зонда, а красными наружная труба зонда приходящая в колодец.
Подача холодного теплоносителя производится во внутреннюю утеплённую трубу зонда, в которой теплоноситель с низкой температурой течёт до самого низа зонда и только потом, изменив направление потока, начинает подниматься вверх охлаждая грунт. Самая холодная часть у коаксиального зонда это нижняя часть на глубине 25-35 метров, но при этом вокруг этой части зонда находиться самый большой объём грунта готовый передать тепло. Теплоноситель поднимаясь по коаксиальному зонду вверх подогревается через стенку внешней трубы и на подходе к колодцу имеет максимально тёплую температуру, поэтому зона вокруг колодца не вымораживается.
Ещё одной интересной особенностью применения наклонного зонда является его бОльшая протяжённость в водонасыщенных слоях с большим количеством тепла, по сравнению с вертикальным.
На рисунке №3 видно, что вертикальный зонд проходя по водонасыщенному слою имеет протяжённость 3 метра, в то время как наклонный зонд 5 метров.
Источник статьи: http://www.energylex.ru/geotermalnoe-burenie
Принцип действия тепловых насосов
Принцип работы устройства для обогрева дома основан на том, что вещество (холодильный агент) может отдавать тепловую энергию либо забирать ее в процессе смены состояния. Эта идея заложена в основу функционирования холодильника (из-за этого задняя стенка прибора горячая).
Термонасос для отопления функционирует следующим образом:
- Поступающий агент охлаждается на 5 градусов в испарительном отделе на основании энергии от носителя тепла.
- Охлажденный агент поступает в компрессор, который в результате работы сжимает и нагревает его.
- Уже горячий газ попадает в отсек для теплообмена, в котором он отдает собственное тепло отопительной системе.
- Сконденсированный хладагент возвращается к старту цикла.
Устройство
Тепловой насос для отопления дома состоит из нескольких основных контурных элементов:
- контур с теплоносителем, который перемещает энергию от теплоисточника;
- контур с фреоном, который периодически испаряется, забирая тепловую энергию с первого контура, и снова оседает конденсатом, передавая тепло третьему;
- контур, где циркулирует жидкость, являющаяся переносчиком тепла для отопления.
Эксплуатация термо насоса для отопления дома является выгодной с финансовой точки зрения. Причина этого в том, что устройство не требует высокой мощности (соответственно, расход электричества не больше, чем у стандартного бытового прибора), однако при этом производится в 4 раза больше тепла по сравнению с потребляемой электроэнергии.
Также не требуется создавать отдельную линию проводки для подключения насоса.
Плюсы и минусы
Перед принятием решения, использовать тепловой насос или нет, следует ознакомиться с достоинствами и недостатками его работы. К главным плюсам теплового насоса относится:
- небольшой расход электричества на отопление дома;
- отсутствие необходимости регулярного осмотра и технического обслуживания, что делает затраты на эксплуатацию теплового насоса для отопления минимальными;
- допускается монтаж в любой местности. Насос может работать с такими источниками тепловой энергии, как воздух, почва и вода. Поэтому появляется возможность его установки практически в любое место, где планируется строительство дома. А в условиях отдаленности от газовой магистрали, устройство является самым подходящим методом обогрева. Даже если отсутствует электричество, функционирование компрессора можно обеспечить при помощи привода на основе бензина или дизеля;
- отопление дома осуществляется в автоматическом режиме. Не требуется добавлять топливо или проводить иные манипуляции, как, например, в случае с котельным оборудованием;
- отсутствие загрязнения окружающей среды вредными газами и веществами. Все применяемые холодильные агенты полностью безопасны и экологически пригодны;
- пожаробезопасность. Жителям дома никогда не будет угрожать взрыв или повреждение вследствие перегрева теплового насоса;
- возможность эксплуатации даже при условиях холодной зимы (до -15 градусов);
- качественный тепловой насос для отопления дома может служить до 50 лет. Замена компрессора требуется лишь раз в 20 лет.
Тепловой Насос ВЫГОДЕН или НЕТ?.. Кому не Стоит Покупать Тепловой Насос? (РАЗБОР)
Смотрите это видео на YouTube
Плюсы и минусы
Как и любое устройство, тепловые насосы имеют определенные недостатки:
- Если температура окружающей среды опускается ниже 15 градусов, то насос работать не сможет. В таком случае потребуется монтаж второго теплоисточника. При очень низких температурных значениях включается котел, генератор или электрический обогреватель;
- Высокая стоимость оборудования. Оно будет стоить примерно 350 000-700 000 рублей, еще такую же сумму придется потратить на создание геотермальной станции и установку устройства. Дополнительные монтажные работы не требуются только для теплового насоса, использующего воздух в качестве теплового источника;
- Лучше всего устанавливать тепловой насос в сочетании с теплым полом или вентиляторными конвекторами, однако в старых зданиях потребуется перепланировка и возможно даже капитальный ремонт, что повлечет дополнительные затраты времени и средств. Если частный дом строится с нуля, такая проблема отсутствует;
- При работе теплового насоса температура грунта, расположенного вокруг трубопровода с теплоносителем, снижается. Это становится причиной гибели некоторых микроорганизмов, участвующих в функционировании окружающей среды. Таким образом, некоторый ущерб экологии все же наносится, однако он существенно меньше урона от газо- или нефтедобычи.