История
Технологию литья чугуна освоили в Китае, откуда этот термин (через татаро-монгольское посредничество) попал в Россию. В X веке в Китае появляются чугунные монеты, однако в широком применении вплоть до XIX века оставались бронзовые монеты. В XI веке был возведен чугунный шпиль пагоды Линсяо. XIV веком датируют находки чугунных котлов Золотой Орды (Тульская область), однако на территории Монголии (Каракорум) монголы умели изготовлять чугунные котлы ещё в XIII веке.
В 1339 году (в годы Столетней войны) при обороне французского города Камбре уже использовались чугунные пушки наряду с бронзовыми. В 1403 году в Китае (Пекин) был отлит чугунный колокол. C 1411 года англичане начинают вооружать чугунными пушками свои корабли. В том же XV веке во Фландрии начинают лить чугунные ядра, которые вытесняют каменные. В XVI веке в России (при Иване Грозном) из чугуна начали изготавливаться пушки. Ввиду отсутствия у чугуна такого свойства как ковкость, его широкое производство стало возможным благодаря внедрению технологии доменной печи. Чугунные пушки появились у маньчжуров лишь в 1631 году, а в Китае они были известны со времени династии Мин, которая потеряла власть в 1644 г.
В 1701 году Каменский чугунолитейный завод на Урале (Россия) производит первую партию чугуна (262 кг). На Урале чугунное литье превратилось в народный промысел (Каслинское литьё). В XVIII веке в Англии появился первый чугунный мост (в России чугунный мост появился лишь в начале XIX века). Это стало возможным благодаря технологии Вилкинсона. В том же веке из чугуна начали изготавливать рельсы (Чугунный колесопровод). Помимо промышленного использования чугун продолжал использоваться и в быту. В XVIII веке появились чугунки, которые широко стали использоваться в русской печи.
В 1806 году Великобритания выплавляла 250 тыс. тонн чугуна, занимая 1-е место в мире по его производству, а к середине XIX века в Великобритании была сосредоточена половина мирового чугунного производства. Однако в 1890 году 1-е место по производству чугуна заняли США. Технология бессмеровского процесса (1856) и мартеновской печи (1864) впервые позволила получать сталь из чугуна. В XIX веке чугун широко используется для изготовления викторианских каминов, а также декоративных элементов (например, чугунная решетка памятника Александра II, 1890). Также в XIX веке из чугуна изготавливались водопроводные и канализационные 12-дюймовые трубы Лондона. Однако с появлением нарезного оружия (Пушка Армстронга, 1854) сталь вновь начинает вытеснять чугун.
Диаграмма состояний железо-углерод
Диаграмма состояний железо-углерод в интервале концентраций от железа до цементита представлена на рис. 1. Линия ABCD является ликвидусом системы, линия AHJECF – солидусом.
Три горизонтальные линии на диаграмме (HJB, ECF и PSK) указывают на протекание трёх нонвариантных реакций. При 14850 (линия HJB) протекает перитектическая реакция LB+ФН→АJ. В результате перитектической реакции образуется аустенит. Реакция эта имеет место только у сплавов, содержащих углерода от 0.1 до 0.5 % . При 11300 (горизонталь ECF) протекает эвтектическая реакция LC→AE+Ц. В результате этой реакции образуется эвтектическая смесь. Эвтектическая смесь аустенита и цементита называется ледебуритом. Реакция эта происходит у всех сплавов системы, содержащих углерода более 2 %. При 7230 (горизонталь PSK) протекает эвтектоидная реакция AS→ФР+Ц. Продуктом превращения является эвтектоидная смесь. Эвтектоидная смесь феррита и цементита называется перлитом.
У всех сплавов, содержащих свыше 0.02 % углерода, т. е. практически у всех промышленных железоуглеродистых сплавов, имеет место перлитное (эвтектоидное) превращение. Таким образом, диаграмма железо – углерод характеризует протекание в этих сплавах эвтектического, эвтектоидного и перитектического превращений.
Внешний вид диаграммы железо – углерод (в своей доцементитной части), т. е. расположение линий на диаграмме, является вполне определённым и устоявшимся. Уточнению подвергаются лишь координаты (т. е. температура и концентрация наиболее характерных точек).
Значения координат точек на диаграмме железо – углерод представлены в таблице 1.
Рис. 1. Диаграмма железо – углерод
Таблица 1.
Характерные точки на диаграмме железо – углерод
Обозначение
точки |
Температура в 0С | Концентрация
углерода в % |
Обозначение точки | Температура в 0С | Концентрация
углерода в % |
A | 1535 | D | 1600 | 6.67 | |
B | 1485 | 0.5 | G | 910 | |
H | 1485 | 0.1 | P | 723 | 0.02 |
J | 1485 | 0.16 | S | 723 | 0.8 |
N | 1400 | K | 723 | 6.67 | |
E | 1130 | 2.0 | Q | 600 | 0.01 |
C | 1130 | 4.3 | L | 600 | 6.67 |
F | 1130 | 6.67 | — | — | — |
Производственные технологии
Как известно, чугун производится в специальных доменных печах. Основным сырьем для его получения служит железная руда. Технологический процесс изготовления состоит в восстановлении оксидов железной руды и получении в результате этого иного материала — чугуна. Для его изготовления используются такие виды топлива, как кокс, термоантрацит, природный газ.
Для производства одной тонны чугуна требуется около 550 килограмм кокса и приблизительно тонна воды. Объемы загружаемой в печь руды будут зависеть от содержания в ней железа. Как правило используют руду, в составе которой содержится железа не менее 70%. Все дело в том, что экономически нецелесообразно использовать меньшую его концентрацию.
Первым этапом производства чугуна является его выплавка. В доменную печь засыпается руда, а затем — коксующийся уголь, который необходим для нагнетания и поддержания требуемой температуры внутри шахты печи. Эти составляющие во время горения принимают активное участие в протекающих химических реакциях в качестве восстановителей железа.
Тем временем в печь погружается флюс, который выступает в роли катализатора. Ускоряя плавку пород, он тем самым поддерживает скорейшее высвобождение железа
Немаловажно знать, что перед загрузкой в печь руда проходит необходимую предварительную обработку. Она измельчается на дробильной установке, поскольку более мелкие частицы плавятся быстрее
Затем ее промывают, чтобы удалить частицы, не содержащие металл. Далее сырье подвергается обжигу, вследствие чего из него извлекается сера и другие инородные компоненты.
На втором этапе производства в заполненную и готовую к эксплуатации печь подается через специальные горелки природный газ. Кокс участвует в разогреве сырья. Происходит выделение углерода, который, соединяясь с кислородом, образует оксид. Он, в свою очередь, способствует восстановлению железа из руды.
При увеличении объема газа в печи снижается скорость протекания химической реакции. Она может и совсем остановиться при достижении определённого соотношения газа. Углерод проникает в сплав и соединяется с железом, при этом образуя чугун. Нерасплавленные элементы остаются на поверхности и вскоре удаляются. Такие отходы называются шлаком. Его используют для изготовления других материалов.
Первый этап производства
Выплавка чугуна происходит следующим образом. В первую очередь в печь засыпают руду, а также коксующиеся марки угля, которые служат для нагнетания и поддержания требуемой температуры внутри шахты печи. Помимо этого, эти продукты в процессе горения активно принимают участие в протекающих химических реакциях в роли восстановителей железа.
Параллельно в печь отгружается флюс, служащий в качестве катализатора. Он помогает породам быстрее расплавляться, что содействует скорейшему высвобождению железа.
Важно заметить, что руда перед загрузкой в печь подвергается специальной предварительной обработке. Ее измельчают на дробильной установке (мелкие частицы быстрее плавятся)
После она промывается с целью удаления частиц, не содержащих металл. После чего сырье обжигают, за счет этого из него удаляется сера и прочие чужеродные элементы.
Второй этап производства
В загруженную и готовую к эксплуатации печь подают природный газ через специальные горелки. Кокс разогревает сырье. При этом выделяется углерод, который соединяется с кислородом и образует оксид. Этот оксид впоследствии принимает участие в восстановлении железа из руды. Отметим, что с увеличением количества газа в печи скорость протекания химической реакции снижается, а при достижении определённого соотношения и вовсе останавливается.
Избыток углерода проникает в расплав и входит в соединение с железом, формируя в конечном счете чугун. Все те элементы, которые не расплавились, оказываются на поверхности и в итоге удаляются. Эти отходы именуют шлаком. Его также можно использовать для производства других материалов. Виды чугуна, получаемые таким образом, называются литейным и передельным.
Выплавка чугуна и стали
Современное металлургическое производство чугуна и стали состоит из сложного комплекса различных производств (рис. 22):
- Шахт и карьеров по добыче руд, каменных углей, флюсов, огнеупорных материалов.
- Горно-обогатительных комбинатов, на которых подготовляют руды к плавке, обогащают их, удаляя часть пустой породы, и получают концентрат – продукт с повышенным содержанием железа по сравнению с рудой.
- Коксохимических цехов и заводов, на которых осуществляют подготовку коксующихся углей, их коксование (сухую перегонку при температуре ~1000°С без доступа воздуха) в коксовых печах и попутное извлечение из них ценных химических продуктов: бензола, фенола, каменноугольной смолы и др.
- Энергетических цехов для получения и трансформации электроэнергии, сжатого воздуха, необходимого для дутья при доменных процессах, кислорода для выплавки чугуна и стали, а также очистки газов металлургических производств с целью охраны природы и сохранения чистоты воздушного бассейна.
- Доменных цехов для выплавки чугуна и ферросплавов.
- Заводов для производства различных ферросплавов.
- Сталеплавильных цехов – конвертерных, мартеновских, электросталеплавильных для производства стали.
- Прокатных цехов, в которых нагретые слитки из стали перерабатываются в заготовки (блюмы и слябы) и далее в сортовой прокат, трубы, лист, проволоку и т. п.
Современное производство стали основано на двухступенчатой схеме, которая состоит из доменной выплавки чугуна и различных способов последующего его передела в сталь. В процессе доменной плавки, осуществляемом в доменных печах, происходит избирательное восстановление железа из его окислов, содержащихся в руде. Одновременно с этим из руды восстанавливаются также фосфор и в небольших количествах марганец и кремний; происходит науглероживание железа и частичное насыщение его серой топлива (кокса). Таким образом из руды получают чугун – сплав железа с углеродом более 2,14%, кремнием, марганцем, серой и фосфором.
Передел чугуна в сталь осуществляют в металлургических агрегатах: в конвертерах, мартеновских и электрических печах. В них из-за ряда происходящих химических реакций осуществляется избирательное окисление примесей чугуна и перевод их в процессе плавки в шлак и газы. В результате получают сталь заданного химического состава.
Рис. 22. Схема современного металлургического производства
Виды
Мы уже немного затронули вопрос о видах портландцемента, которые отличаются по минеральному содержимому. Еще есть несколько классификаций, по которым различают порошковые составы с приставкой «портланд».
Так, составы делят на цементы с добавками и без. Смеси без добавок используют при строительстве в неагрессивных условиях. А присадки применяют для улучшения качеств бетона. Если нужна водонепроницаемость, обрабатывают гидрофобными средствами
Если важно, чтобы бетон был прочный, застывал быстро без усадки с растрескиванием – используют армирующие волокна
Другая классификация делит составы по скорости схватывания, а также характеристикам стойкости к разным агрессивным воздействиям:
- Быстросхватывающийся раствор. Здесь используют марки М400 и М500. Такой состав твердеет через 3 дня. Это качество подходит российскому менталитету, когда хочется уже построить и отдыхать.
- Пластифицированный цемент с добавками, которые замедляют твердение, улучшают текучесть. Такие растворы делают для транспортировки или для удобства заливки.
- Раствор нормального схватывания. Это бездобавочная смесь, которую готовят в соответствии с ГОСТом.
- Гидрофобный портландцемент используют в местах повышенной влажности. Это может быть строительство гидросооружений, подтопляемых фундаментов или бассейнов. Добавки помогают бетонному составу противостоять воздействию воды.
- Сульфатостойкий. Такой материал хорош для строительства на кислых почвах. Из него изготавливают сваи, фундаменты. Специальные химические присадки делают постройки устойчивыми к коррозии.
- Специальный раствор, который позволяет тампонировать (защищать) нефтедобывающие скважины в период их строительства от воздействия грунтовых вод.
- Расширяющийся раствор нужен там, где трудно сделать заливку механическим путем. Он заполняет трещины самостоятельно, при расширении. Увеличение объема строительного состава происходит за счет внутренних химических реакций.
- Шлокопортландцемент имеет повышенное содержание металлических частиц из доменных шлаков. Бетон получается жаростойкий, но не устойчив к морозам. Этот вид стройматериала подходит для подземного, подводного строительства или на высоте.
- Белый «портланд» изготавливают из белых минералов (каолиновой глины, мела, чистого известняка). Этот тип подходит для производства цветных бетонных изделий, для архитектурного строительства. Белый «портланд» обладает уникальным свойством создавать идеально гладкую поверхность.
- Шлакощелочной имеет в составе щелочи, шлаки, глину. Он устойчив к температурным колебаниям, агрессивным средами. Шлакощелочной бетон отличается гидрофобными (водоотталкивающими) свойствами.
- Пуццолановый. Этот вид обладает повышенной апатией к воде. Вернее, он ее вообще игнорирует. С легкостью застывает даже в ее присутствии. Этот вид используется для постройки бассейнов, емкостей для воды, объектов, которые контактируют с морской, хлорированной водой.
На мешках портландцемента, разные его виды маркируют буквами. Например:
- ШПЦ – шлокопортландцемент.
- БЦ – белый цемент.
- СС – сульфатостойкий.
- ПЛ – пластифицированный и т.д.
Классификация чугунов
Металлургическая промышленность выпускает разные виды чугуна. Сорт зависит от участвующих в сплаве форм графита или цементита и остальных компонентов.
Серый чугун (СЧ)
Обозначают буквами СЧ. На разрезе – серовато-черный, что обусловлено присутствием графита, этого природного цвета. В составе также присутствуют различные примеси, в том числе и кремний. Этот вид чугуна, свободно поддающийся резке и часто употребляющийся в машиностроительной отрасли для «неосновных» деталей, при добавлении фосфора становится жидкотекучим. Применим для всех видов литья, в том числе художественного.
Белый чугун
На разрезе светлый, благодаря присутствию карбида железа. Подвергается дальнейшей переработке на ковкий чугун и сталь. Поэтому сорт называют передельным. Свойства – хрупкость и твердость, слабо обрабатываемый, не годится для самостоятельного использования. Твердый, слабо подвержен обработке, хрупкий – такие свойства делают его непригодным для самостоятельного использования.
Ковкий чугун
Обозначение — КЧ. При длительном отжиге белый чугун преобразуется в ковкий.
Свойства – не поддаётся обработке давлением, но при этом обладает повышенной сопротивляемостью ударам и прочностью при растяжении. Ковкий чугун подходит для изготовления деталей усложненной конфигурации.
Высокопрочный
Маркируют буквами ВЧ. Получают при введении в серый жидкий чугун спецдобавок, для придания графиту сфероидальной формы. Высокопрочный вид чугуна применяют для изготовления ответственных деталей – шестерён, коленвалов, поршней, которые должны иметь высокую износоустойчивость.
Форма выпуска передельного и литейного видов – специальные формы – чушки. Современные технологии позволяют получить полуфабрикаты, квадратные, листовые, пластинчатые, брусковые заготовки разновидностей чугуна.
В зависимости от назначения и химсостава выделяют следующие разновидности чугуна:
- ферросплавы
- легированные.
Они имеют названия, соответствующие металлам-добавкам:
- циркониевые;
- хромистые;
- ванадиевые;
- медные;
- титановые.
Легированные виды более всего востребованы в производстве агрегатов, механизмов, узлов и деталей, работающих в особо неблагоприятных средах и условиях.
Чугун, отличающийся увеличенным процентным включением ферромарганца или ферросилиция, относят к специальным – ферросплавам. Добавляются в сталеплавильном производстве для выделения кислорода – раскисления.
К легированным чугунам относят:
- Антифрикционные;
- Жаростойкие;
- Жаропрочные;
- Коррозионностойкие.
Антифрикционные виды маркируются первыми буквами АЧ. Например, АЧС — это антифрикционный серый чугун. Ещё можно увидеть маркировку АЧВ — антифрикционный высокопрочный чугун и АЧК — антифрикционный ковкий.
Жаростойкий вид маркируют буквами ЖЧ. Далее указывается буква обозначающая легирующий элемент. Например, ЖЧХ-2,5. Это жаростойкий чугун с добавлением хрома 2,5%.
К жаростойким относят марки: ЧН19ХЗШ.
К коррозионностойким: маркировка ЧНХТ, ЧН1МХД
Еще их называют специальными чугунами.
Области применения
Бездобавочный портландцемент общестроительного назначения является неотъемлемым материалом в любой строительной области. И его крупнейшими потребителями считается нефтяная и газовая промышленность. Материалы, которые из него изготавливаются, успешно заменяют дерево, камень, известь и прочие природные компоненты, имеющие ограниченное количество.
Как разводить портландцемент
Данный вид цемента продается в любых строительных магазинах. Процесс приготовления раствора достаточно прост, чтобы самостоятельно его выполнить. Для этого потребуется от 1,4 до 2,1 литра воды на каждые 10 кг цементной смеси. Более точный объем воды рассчитывается в зависимости от необходимой густоты раствора.
Технические характеристики
По ГОСТ 1017-85 шлакопортландцемент включает в себя такие компоненты и технические условия:
- Клинкер должен содержать магний не больше 5-6 %, так как этот элемент способен снизить качественные характеристики бетона.
- Шлаки в гранулах, полученные доменным или электротермометаморфическим путем – примерно, 20-80 % (в зависимости от того какие характеристики нужны).
- Минералы гипсового происхождения – чистый гипс, добытый природным путем с добавление фосфора и фтора, но не больше 5 процентов от всего объема клинкера.
ШПЦ делят на два вида – нормальнотвердеющий и быстротвердеющий. Во второй материал добавляют специальные присадки, которые являются ускорителями минерального и вулканического происхождения – пепел, пемза. Бетон из шлака имеет такие пропорции: 4-5 частей шлака, 2 части цемента, 2 части песка. Прочность таких изделий достигается уже через 1-2 недели.
Бетоны на основе металлургических шлаков отрицательно переносят перепады температуры, поэтому материал будет затвердевать долгое время в прохладных условиях. Для ускорения процесса используют специальные присадки или обрабатывают конструкцию теплом при помощи тепловых подушек либо опалубок с электроподогревом. При воздействии высоких температур бетон наберет прочность через 28 дней. Вяжущее вещество обладает такими качествами:
- если в состав входит большое количество шлаков, тем будет дольше твердеть бетонная смесь и меньше тепла будет выделено при гидратации;
- шлаковые цементы дают такую же усадку, как и портландцемент;
- жаростойкость ШПЦ составляет от 600 до 800 градусов С;
- цемент на шлаке при отсутствии активных веществ и плотной молекулярной консистенции после застывания не будет вступать в реакции с водой. Такой материал является незаменимым для возведения сооружений во влажных условиях.
Портландцемент и шлакопортландцемент имеют такие отличия:
- Стоимость портландцемента гораздо выше, чем обычная смесь ШПЦ.
- Портландцемент быстрее становится прочным, а бетон, со шлаком спустя 21 день.
- В портландцементном составе нет шлака, туда входят клинкер и определенный минеральный состав со специальными присадками-ускорителями.
- ШПЦ имеет менее выраженную экзотермическую реакцию в процессе затвердения, бетонная смесь почти не нагревается, это в свою очередь приносит трудности при показателях температуры ниже +4 градусов С.
- Шлакопортландцемент имеет меньшую плотность и вес готовых конструкций.
Сущность доменного процесса
Доменный процесс предназначен для непрерывного получения чугуна из железорудного сырья: руды, агломерата, окатышей. Топливом в доменной печи является кокс. Снизу в доменную печь через фурмы подается горячий воздух под давлением, обогащенный кислородом и природным газом (комбинированное дутье). В горне печи происходит сгорание кокса и инжектируемого топлива, горячие восстановительные газы поднимаются вверх. Железорудные материалы, кокс и флюсы загружаются сверху порциями (подачами). Шихта движется вниз, нагревается, железо и другие элементы восстанавливаются. Науглероженное железо с примесями: кремний, марганец, ванадий и др. образует чугун; пустая порода вместе с флюсами образует шлак. Жидкие продукты плавки скапливаются в горне и выпускаются через летку.
Большая часть чугуна в жидком виде транспортируется в кислородно-конвертерный цех для производства стали.
Основные методы чугунного литья
Современная промышленность использует много различных методов производства чугунного литья. Они сводятся к нескольким основным методам литья:
в формы из глиняно-песчаной смеси (так называемое литье «в землю»)
внутрь формы помещается модель готового изделия, полностью повторяющаяся его форму, но превышающая его по размерам на величину литейной усадки. Глиняно-песчаная смесь трамбуется и уплотняется, обеспечивая полное прилегание к модели. Литье чугуна в форму осуществляется через специально предусмотренные отверстия — литники.
- в гипсовые формы (и из других отвердевающих растворов);
- в оболочковые формы;
- в кокиль (металлические защищенные формы);
- по выплавляемым моделям;
- под давлением.
- В газифицируемую модель
Специалисты различают несколько видов чугуна, в зависимости от содержания тех или иных примесей.
Серый чугун содержит от 2,9% до 3,7% графита и кремний, обладает отличными литейными свойствами:
- низкая температура плавления
- высокая текучесть расплава
- малая усадка.
Является подходящим материалом для корпусов станков и механизмов, поршней и блоков цилиндров двигателей. Высокая хрупкость исключает применение материала в деталях, работающих на изгиб и растяжение. Литье серого чугуна преимущественно проводится в песчаные формы и в кокиль.
Высокопрочный чугун, ВЧШГ, содержит графит в шаровидной форме. Этот вид графита отличается высокой вязкостью и ковкостью, пригоден для кузнечной обработки. Из него отливают трубы, трубопроводную арматуру, ответственные и высоконагруженные детали механизмов.
Изделия из высокопрочного чугуна производят также методом литья в газифицируемую модель. Литье чугуна производится в форму из песчаной смеси, уплотненной вокруг полистироловых блоков моделей.
Для улучшения механических свойств отливки из высокопрочного чугуна подвергают термической обработке. Ее основные этапы:
- нагрев до 850 °C;
- выдержка в нагретом состоянии несколько часов;
- медленное остывание в минеральном масле при 350 °C.
Термообработка повышает однородность материала и снимает внутренние напряжения в отливке, снижая вероятность возникновения трещин в процессе эксплуатации